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1 Introduction

This report explains the methodology involved in the construction of a 2D as well as a 3D library
for the Dynamical Analysis of a double pendulum. The primary motivation to develop the library
is to ease the simulation of different systems with different parameters. For example, different codes
have to be developed for the simulation of a double pendulum and an excavator. But, once the
library is developed, both the systems can be simulated using the same library.

2 Methodology

2.1 Explantion of Methodologies

This section describes the methodology used to simulate the double pendulum with and without
using a library.

2.1.1 Methodology 1

Methodology 1 is a direct method for computing the State Vector. No libraries are defined in this
case.
When the Main function of Methodology 1 is run, the Matlab code executes as explained below:

• The parameters such as number of state variables, number of constraints, sprime vectors,
mass of bodies, moment of inertia of bodies, initial state vector and total time of simulation
are stored in the workspace.

• The buildmechanism function is called for the initial state vector. The mass matrix, jacobian,
PHIpq vector and Force vector are defined in the buildmechanism. These vectors are defined
in the function based on hand based calculations.

• The function handle for f DAE0 and Evalconstraints are defined. These functions return the
Ẏ - derivative of state vector and constraint vector respectively.

– The DAE obtained from calculations on paper is defined inside the f DAE0 function. It
is important to call the BuildMechanism inside f DAE0 in order to make sure the mass
matrix, jacobian, PHIpq vector and Force vector are updated at each time step.

– The constraint vector obtained from calculations on paper is defined in side the Eval-
constraints function.

• NumericalAnalysis function is called. The function handles f DAE, f Evalconstraints are
passed into the NumericalAnalysis function along with n,m,l,initial state vector, final time of
simulation

– Inside the NumericalAnalysis function, ode15s is used to solve for the state vector. The
f DAE function handle is given as the ode function to be solved by the ode15s solver
since f DAE0 function returns the derivative of the state vector.

– The Evalconstraints functions is called and assigned to PHI vector at each time step.
The norm of PHI at each time step is determined and returned to the main function.
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2.1.2 Methodology 2

Methodology 2 uses libraries for computing the State Vector.
When the Main function of Methodology 2 is run, the Matlab code executes as explained below:

• The parameters such as number of state variables, number of constraints, sprime vectors,
mass of bodies, moment of inertia of bodies, initial state vector and total time of simulation
are stored in the workspace.

• The buildmechanism function is called for the initial state vector. The mass matrix, jacobian,
PHIpq vector and Force vector are obtained by calling the following function.

– The mass matrix function returns the mass matrix for the DAE when the body number,
mass and inertia are passed.

– JAC revolute function returns the Jacobian of revolute joint.

∗ The PHIq revolute function returns the parts of the jacobian corresponding to a
particular body.

∗ The f statevar function returns the velocity, parameter and displacement vector when
the state variable is passed.

– The Gamma revolute function returns the gamma vector used in the DAE.

∗ The f RM function returns the ’A’ rotation matrix for a given angle.

– The force vector Qa is defined directly.

• The function handle for f DAE0 and Evalconstraints functions are defined. These functions
return the Ẏ - derivative of state vector and constraint vector respectively.

– The DAE is defined inside the f DAE0 function. It is important to call the BuildMecha-
nism inside f DAE0 in order to make sure the mass matrix, jacobian, PHIpq vector and
Force vector are updated at each time step.

– The constraint vector obtained by calling the f revolute function twice inside the Eval-
constraints function. f revolute function returns the constraint vector for a given revolute
joint.

• NumericalAnalysis function is called. The function handles f DAE, f Evalconstraints are
passed into the NumericalAnalysis function along with n,m,l,initial state vector, final time of
simulation

– Inside the NumericalAnalysis function, ode15s is used to solve for the state vector. The
f DAE function handle is given as the ode function to be solved by the ode15s solver
since f DAE0 function returns the derivative of the state vector.

– The Evalconstraints functions is called and assigned to PHI vector at each time step.
The norm of PHI at each time step is determined and returned to the main function.

5



2.1.3 Library Structure for Methodology 2

	
Main.m	

BuildMechanism.m	

NumericalAnalysis.m	

EvalConstaints.m	f_DAE0.m	

Gamma_revolute.m	

JAC_revolute.m	

mass_matrix.m	

f_revolute.m	

f_r.m	

f_StateVar.m	

f_angle.m	

f_cg.m	

f_RM	

PHIq_revolute.m	

PHIq_revolute.m	

Gamma_revolute.m	

2.2 Difference between 3D and 2D libraries

The 3d library differs from the 2D library in the following aspects:

• The 3D library used a structure similar to the 2D library but it was more complex (as
expected) in the sense that it required more number of functions for its development.

• The 3D library took more computational time to simulate the double pendulum than the 2D
library. This increase in computational time can be attributed to the increase in the number
of equations and parameters.

• The 3D library used structures to pass the revolute joint parameters and body property
parameters into the functions. More explanation on this has been given in the following
section.

• The 3D DAE equation uses Euler parameters instead of angles in the state vector. Functions
that relate to euler parameters had to be created for the 3D library.
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2.3 Matlab Code Execution Explnation

This section explain how the parameters and the state vectors are passed through the code.

• The first step of the execution of the matlab code for 2D library is definition of parameters,
initial state vector and functions handles for fDAE0, BuildMechanism and EvalConstraints.

• The NumericalAnalysis function is called. The functions handles for fDAE0, Evalconstraints
and BuildMechanism are passed as parameters to the function.

• The ode15s inside the NumericalAnalysis functions calls the fDAE0 function handle to com-
pute the value of the derivative of the state vector at a given time.

• The BuildMechanism function handle is called inside fDAE0 at each time step to compute
the values required for the DAE.

• The ode15s integrates the output of fDAE0 function to get the state vector at each time step.

• The state vector obtained at each time step is passed to the EvalConstraints function to get
the constraint vector at a given time step. The norm of constraint vector is then calculated.

• The state vector for the whole time span and the norm at each time step is passed to the
main function. This data is used for plotting as well as animation.

2.4 Benefits of Function handle f DAE

f DAE is the function handle that stores the association to the function f DAE0. The function
handle is defined in such a way that the time and the state vector can be passed along with the
function handle. For example when the function handle f DAE is called by the ode15s for a given
time step and state vector, these parameters are passed to the main file to the place where the
function handle is defined. The values passed by the ode15s in the NumericalAnalysis function are
passed into the function. The remaining values are passed from the main file.

2.5 2D Double Pendulum Solution Steps

2.5.1 Separation of bodies

The two bodies are separated and local coordinate systems are assigned as shown in Fig. 1.
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Figure 1: Individual bodies of double pendulum

The q1 and q2 matrices are defined for the two bodies.

q1 = [x1, y1, ϕ1]T q2 = [x2, y2, ϕ2]T

q = [x1, y1, ϕ1, x2, y2, ϕ2]T

2.5.2 Rotation matrix definition

The rotation matrices are defined for the two bodies. The rotation matrix can be expressed as

R =

[
cosϕ −sinϕ
sinϕ cosϕ

]

2.5.3 Defining s′ vectors

The position of points A, B and C with respect to the local coordinate systems are defined as
follows,

s′A1 =

[
0
L

]
s′B1 =

[
0
−L

]
s′B2 =

[
0
L

]
s′C2 =

[
0
−L

]
The position of the local coordinate systems of the two bodies would be

r1 =

[
x1
y1

]
r2 =

[
x2
y2

]

8



2.5.4 Defining rA and rB vectors

The position of points A and B with respect to the global coordinate system are defined.

rO =

[
0
0

]
rA1 = r1 +R1s

′
A1 =

[
x1
y1

]
+

[
cosϕ1 −sinϕ1

sinϕ1 cosϕ1

] [
0
L

]
=

[
x1 − Lsinϕ1

y1 + Lcosϕ1

]
rB1 = r1 +R1s

′
B1 =

[
x1
y1

]
+

[
cosϕ1 −sinϕ1

sinϕ1 cosϕ1

] [
0
−L

]
=

[
x1 + Lsinϕ1

y1 − Lcosϕ1

]
rB2 = r2 +R2s

′
B2 =

[
x2
y2

]
+

[
cosϕ2 −sinϕ2

sinϕ2 cosϕ2

] [
0
L

]
=

[
x2 − Lsinϕ2

y2 + Lcosϕ2

]

2.5.5 Defining the constraint equations

The given system has two revolute joints which can be expressed as

rA1 − rO = 0

rB2 − rB1 = 0

On expansion we get the constraint vector as,

Φ(q) =


x1 − Lsinϕ1

y1 + Lcosϕ1

x2 − Lsinϕ2 − x1 − Lsinϕ1

y2 + Lcosϕ2 − y1 + Lcosϕ1

 = 0

2.6 2D Library DAE Equation

The velocity and acceleration vectors are

q̇ = [ẋ1, ẏ1, ϕ̇1, ẋ2, ẏ2, ϕ̇2]T

q̈ = [ẍ1, ÿ1, ϕ̈1, ẍ2, ÿ2, ϕ̈2]T

The jacobian matrix is given by

Φq =


1 0 −Lcosϕ1 0 0 0
0 1 −Lsinϕ1 0 0 0
−1 0 −Lcosϕ1 1 0 −Lcosϕ2

0 −1 −Lsinϕ1 0 1 −Lsinϕ2



Φqq̇ =


1 0 −Lcosϕ1 0 0 0
0 1 −Lsinϕ1 0 0 0
−1 0 −Lcosϕ1 1 0 −Lcosϕ2

0 −1 −Lsinϕ1 0 1 −Lsinϕ2




ẋ1
ẏ1
ϕ̇1

ẋ2
ẏ2
ϕ̇2


=


ẋ1 − ϕ̇1Lcosϕ1

ẏ1 − ϕ̇1Lsinϕ1

−ẋ1 − ϕ̇1Lcosϕ1 + ẋ2 − ϕ̇2Lcosϕ2

−ẏ1 − ϕ̇1Lsinϕ1 + ẏ2 − ϕ̇2Lsinϕ2


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γ ≡ Φqq̈ = −(Φqq̇)q =


0 0 −ϕ̇1Lsin(ϕ1) 0 0 0
0 0 ϕ̇1Lcos(ϕ1) 0 0 0
0 0 −ϕ̇1Lsin(ϕ1) 0 0 −ϕ̇2Lsin(ϕ2)
0 0 ϕ̇1Lcos(ϕ1) 0 0 ϕ̇2Lcos(ϕ2)


λ = [λ1, λ2, λ3, λ4]T

QA = [0,−mg, 0, 0,−mg, 0]T

The equation equation can be expressed asM ΦT
q 0

Φq 0 0
0 0 I

q̈λ
q̇

 =

QA

γ
q̇


The DAE equation is solved using Matlab ode15s.

2.7 Limitations of the 2D Library and DAE equation

Careful analysis of the norm graph given below in 2D library methodologies shows that the error
in the displacement vector is accumulated over time. This implies that the DAE equation used and
the solution of the ode15s obtained will have significant error when simulated for very long time
span.

10



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time, t [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

N
or

m
o
f
th

e
co

n
st

ra
in

tj?
j

#10 -5 2D Library - Norm

Norm

Figure 2: Time vs 2D Norm
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3 Results

3.1 2D Library Results

3.1.1 Norm
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Figure 3: Time vs Norm
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3.1.2 Linear Displacements
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Figure 4: Time vs Linear Displacements
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3.1.3 Angular Displacements
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Figure 5: Time vs Angular Displacements
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3.1.4 Linear Velocities
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Figure 6: Time vs Linear Velocities
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3.1.5 Angular Velocities
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Figure 7: Time vs Angular Velocities
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3.1.6 Linear Acceleration
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Figure 8: Time vs Linear Acceleration
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3.1.7 Angular Acceleration
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Figure 9: Time vs Angular Acceleration
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3.2 3D Library Results

3.2.1 Norm
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Figure 10: Time vs Norm
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3.2.2 Linear Displacements
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Figure 11: Time vs Linear Displacements
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3.2.3 Euler Parameters
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Figure 12: Time vs Euler parameters
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3.2.4 Linear Velocities
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Figure 13: Time vs Linear Velocities
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3.2.5 Euler Parameter Derivatives
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Figure 14: Time vs Euler Parameter Derivatives
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3.3 Comparison of 2D and 3D library results

The plot below compares the results obtained from 2D and 3D library with zero initial velocities.
Since both the plots match, the libraries are validated.

24



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time, t [s]

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

L
in

ea
r
D

is
p
la

ce
m

en
t
[m

]

2D and 3D results comparison

2D Library x2

2D Library y2

3D Library x2

3D Library y2
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4 Other Results

4.1 Bipdeal Robot Simulation

The double pendulum was converted to a bipedal robot by changing the initial conditions. The
program was simulated to the event where point C hit a point located L

3 below the ground. The
following results were obtained.

4.1.1 Norm

Figure 16: Time vs Norm
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4.1.2 Linear Displacements

Figure 17: Time vs Linear Displacements
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4.1.3 Angular Displacements

Figure 18: Time vs Angular Displacements
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4.1.4 Linear Velocities

Figure 19: Time vs Linear Velocities
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4.1.5 Angular Velocities

Figure 20: Time vs Angular Velocities
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4.1.6 Linear Acceleration

Figure 21: Time vs Linear Acceleration
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4.1.7 Angular Acceleration

Figure 22: Time vs Angular Acceleration

5 Conclusion

The Multibody Dynamic System library was successfully created and validated for for both 2
dimensional and 3 dimensional systems. After working on this library I am confident I will be
able to simulate complex multibody systems in a systematic way. This experience helped me gain
knowledge on how multibody softwares work. My ability to solve problems that require rigorous
coding has improved a lot. My recommendation for future classes would be to allow students to
work in teams for library related assignments as I believe it will help them develop the library
faster. Also it is easy to point out the bugs in the code build by one student while working as a
team.
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