

ME5984 SS: Experimental Robotics

Final Report

Team #1

By,
Mengyu Song

Sai Tej Paruchuri
Mingyi Liu

Bhavi Bharat Kotha

Statement of Responsibility

Task 1: Hardware and Software Integration
Task 2: Mapping, Navigation and Global Localization
Task 3: Human-Machine Interface and ROS Networking
Task 4: Wrench Detection and Local Co-ordinate System

 Weight

(1 or
above)

Mengyu
Song

Sai Tej
Paruchuri

Mingyi
Liu

Bhavi
Bharat
Kotha

Sub-total Total
(Weight *
Sub-total)

Task 1 1 25% 25% 25% 25% 100% 100%

Task 2 1 25% 25% 25% 25% 100% 100%

Task 3 1 25% 25% 25% 25% 100% 100%

Task 4 1 25% 25% 25% 25% 100% 100%

Total 4 100% 100% 100% 100%

Normalized 1 25% 25% 25% 25% - 100%

Background
 A vehicle which runs without a person on board is called as an uncrewed vehicle or an
unmanned vehicle. These kind are usually controlled by a person sitting in a room called the
“server room” and controls the vehicles remotely. Sometimes they are autonomous, meaning they
are partly programmed with artificial intelligence codes which help it to sense and navigate their
environments without any human interaction. There are many types of unmanned vehicles:
Unmanned ground vehicles (autonomous cars), unmanned surface vehicles, autonomous
underwater vehicle, unmanned spacecraft, etc. [1]
 There has been a lot of talk regarding drones or unmanned vehicles in the recent years.
There are many advantages of having an unmanned vehicle. The human error is completely
eliminated which helps in reducing the maintenance costs to a large extent. Present-day
unmanned vehicles also have more fuel efficiency and have longer operational durations. In the
fields like precision agriculture and public safety, unmanned vehicles contribute and can
accomplish tasks with a much greater efficiency than humans. Some of the other fields in which
UAV’s can make a major contribution are wildfire mapping, agricultural monitoring, disaster
management, thermal infrared power line surveys, telecommunication, weather monitoring, aerial
imaging/mapping, oil and gas exploration, etc. Unmanned Aerial Vehicles contribute a lot in the
sector of defense and can help in lowering the human causalities as humans are far away from
the battlefield. [2]
 The following are the few important sectors which help in making an effective unmanned
vehicle:
1. Sensor Fusion: Using different sensors and combining the information we get from the

sensors will provide us more data to make the vehicle less human dependable.
2. Communications: Handling communication and coordination between multiple agents in the

presence of incomplete and imperfect information.
3. Motion/Path Planning: Determining an optimal path for the vehicle to go while meeting certain

objectives and constraints, such as obstacles.
4. Obstacle Avoidance: Sensing the environment for obstacles

One of the first semi-autonomous vehicle was developed by General Motors. The General
Motors’ Firebird II was programmed to move into a lane and follow it along and this was made
possible with the help of a metal conductor placed on the car. Google Self Driving Cars are one
of the current project running in this world providing us with a completely autonomous ground
vehicle helping in transportation of people. Their objective is to provide with an access to safe
transportation for everyone and especially for people who are not capable of driving on streets
[3]. According to lot of surveys 94% of accidents in the U.S. involve human error. By having
autonomous vehicles, we can drastically reduce the number of accidents and deaths due to this
problem.

There are many challenges in developing an unmanned vehicle. One of the main problem
for a software platform dedicated for running and computing data for an Unmanned Vehicle. The
absence of fast computing power provides delays and in turn creates problems for the vehicle.
Mapping and self path planning are also one of the difficult areas in this field. Also one of the most
important problem when it comes to designing a unmanned vehicle comes in critical decision
making. A scenario where an autonomous car has to decide whether to swerve right or left, for
instance – either injuring three people in a truck or potentially killing a person on a motorcycle is
an ethical dilemma. [4] Some of the practical problems which the Google Car is still facing are
intense weather conditions, potholes, roads that haven’t been thoroughly googled (i.e., google
maps), old road constructions, unexpected human interactions, dense traffic areas. [5]

Objectives
 Obtaining a recognition algorithm to locate an object of our desire. This area of research
can contribute in the area of obstacle avoidance for an autonomous vehicle helping it to become
more robust.
 Making it unmanned by using a software which relays commands to the vehicle from a
server station.
 Mapping the travelled area using a fusion of hardware and software. This helps in path
planning and decision making of the unmanned vehicle.
Problem Formulation
 The following are the tasks which were fulfilled for our competition:

1. Identify the location of the shortest wrench hanging on the wall in a global coordinate
frame.

2. Tele-operation to wrench board.
3. 2D mapping of the environment.
4. Automatic Visual Detection.
5. Visual Servoing.
6. Relative Localization Accuracy.
7. Global Localization accuracy.
8. Time limit for the tasks to be completed is 10mins.

Approach
ROS (Robot Operating System) was used as the software element for achieving the tasks

for the competition. ROS is an open source software development feature which provides a
functionality like an operating system. It has a vast collection of tools and libraries to help
developers in the fields of software to create varied application for development of robots. It
provides hardware abstraction, device drivers, libraries, visualizers, message-passing, package
management, etc. ROS is used in many areas like Perception, Object Identification, Segmentation
and recognition, Face recognition, Gesture recognition, Motion tracking, Egomotion, Motion
understanding, Structure from motion (SFM), Stereo Vision, Motion, Mobile Robotics, Control,
Planning, Grasping, etc.
For the locomotion of the vehicle, four DC motors were used which were controlled with the help
of the Sabertooth Motor Driver and the Arduino Mega micro-controller (as shown in figure 1).
Sabertooth 2x25 is a motor controller which was used to control the DC Motors with the help of
the Arduino.

• Input Voltage: 6-24V nominal, 30V absolute max
• Output Current: Up to 25A continuous per channel. Peak loads may be up to 50A per

channel for a few seconds [12].
The simplified Serial Mode configuration was used with a baud rate of 38400. Figure 2 is Dip
Switch Configuration for Simplified Serial Mode with a 38400 baud rate.

Figure: 1 Figure: 2 Figure: 3

 Arduino Mega 2560 (as shown in Figure 3) is a microcontroller board used to interface
between the motor controller and the human element. It has 54 digital input/output pins, 16 analog
inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power
jack, an ICSP header and a reset button. The Serial Port (UART) was connected to the motor
controller as the S1 supply signal and was used to control the motors [13].
The following are the list of the other hardware which we used in our vehicle to achieve our tasks:

1. Logitech wireless gaming controller (figure 4) to control the vehicle from the server room
with the help of the master computer. The “joy” ROS package was used in ROS for
integrating the joystick hardware to the software.

Figure: 4 Figure:5 Figure: 6 Figure: 7

2. SICK LIDAR (figure 5) for mapping our environment [14].
3. Asus Xtion camera (figure 6) for formulating the depth and the RGB image of the

environment.
4. EEE PC box (figure 7) as the onboard computer.
5. USB wi-fi adapter (figure 8) to increase the range of the wi-fi signal.
6. We used two 24V battery pack on board the vehicle to power the whole vehicle.

All these components have been integrated together to achieve the final result.

Figure 8 Figure: 9

Human-Machine Interface, Networking and Joystick Integration
 ROS is a distributed computing environment. A running ROS system can comprise
dozens, even hundreds of nodes, spread across multiple machines. Depending on how the
system is configured, any node may need to communicate with any other node, at any time.
 The task (remote control and detection) requires two computers, i.e. the host (onboard
computer) and the client (display and command computer) to communicate. A reliable network
must have established by connecting the two computers together. First we tried wireless
communication network: CMS-Wireless. The problem is that the signal coverage is not strong
enough when the vehicle got the corridor, so we build a LAN. Client computer is connected to the
hub via a internet cable and host computer is connected to the hub via wireless signal. In order
to cover the entire range of the route, the hub is placed at the sharp point of the L shaped route,
i.e. the middle point of the route. Here is the description of the detailed setup and configuration of
ROS network.
 To get to know the IP addresses, we look them up in the connection information menu
under the wifi icon of the task bar. Then we get the administrator rights to write access the hosts
file and save. So, open the editor by evaluating the following command line:

sudo gedit /etc/hosts
 Then change the host and client IP address to the IP address we get from connection
information category.
===
10.1.160.91 host
10.1.160.36 client
===
 ROS needs to know the name of each machine it is running on. This done by setting the
ROS_HOSTNAME environment variable of each machine with its own name. Besides, we should
provide ROS with URI of the master node, that is launched by the roscore command. Since in a
ROS graph, there should be only a single master node, its URI should replicated on all machines
by setting the ROS_MASTER_URI environment variable.
 In our setting, we chose to run ROS master node on host. So, in host we set the
environment variables as following:
export ROS_HOSTNAME=host
export ROS_IP=host
export ROS_MASTER_URI=http://host:11311
 On client computer, we set the environment variables as client.
 For each of the Linux terminal we opened, we configure them in the example above. In
this way, once we open an roscore on master, all the other nodes subscribe the same roscore,
i.e. the roscore running on the master computer. Since the on board computer (master) is
comparatively old, i.e. less calculation power and slow, this is a very good way to finish the task
since the nodes running on client computer use the calculation power on its own, while only
subscribe the information from the host computer. Every time we run a node on the client
computer with right ROS environment configured, we will use the calculation power on the client
computer, which will not drain the host computer resources. At the same time, the node running
on the client computer will subscribe and use all the information on the host computer.
Joystick
 Although we do not use complete autonomous system to navigate the vehicle, feedback
control is needed. Real time video flown of the vehicle’s sight is shown on the computer screen.
One of our teammate serves as the operator: control the vehicle by looking at the screen. In order
to get better performance, we use joystick to control. On the joystick, the definition of the joystick

Button 1 2 3 4 5 6

Function Left Turn Backward Right Turn Forward Stop Slow Forward

Method Left:CCW Right:CW both CCW Opposite to 1 both CW both stop both slow CW

Table: 1
CW: clockwise CCW: counter clockwise
The function is connected with the correspondent wheel movement.

Navigation

One of the goals for an autonomous robot operating in an unknown environment is to be
able to construct a map and to localize itself in it. Robotic mapping deals with the study and
application of ability to construct map by the autonomous robot and to localize itself in it. In robotic
mapping, simultaneous localization and mapping (SLAM) is the computational problem of
constructing or updating a map of an unknown environment while simultaneously keeping track
of an agent's location within it.

The SICK LMS 291 Laser Measurement Systems is a non-contact measurement systems
(NCSDs). The system scans its surroundings two-dimensionally with a radial field of vision using
infra-red laser beams (laser radar). Such laser measurement systems can be used for area
monitoring, object measurement and detection, determining positions.
SICK LMS 291 technical specifications

• Operating Voltage: 24V
• Required Power: 20W
• 75Hz Scan rate over 180o range
• 0.25o angular resolution
• Sensing Range: 30m at 10% reflectivity; 80m of max. range
• Error: 10mm

ROS Packages used are the following:
1) Laser range finder driver package

Siscktoolbox/Sicktoolbox_wrapper packages were used to obtain scan data from the SICK LMS
291 laser range finder. [8]

2) Mapping package
Hector mapping is a simultaneous localization and mapping (SLAM) package that can be used
without odometry. It provides 2D pose estimates at scan rate of the sensors. Even though this
system does not provide explicit loop closing ability, it was used for mapping of unknown
environment by the tele-operated robot because it is considered to be sufficiently accurate for
many real world scenarios. The system has successfully been used by members of robotics
community on Unmanned Ground Robots, Unmanned Surface Vehicles, Handheld Mapping
Devices and logged data from quadrotor UAVs [6]
Implementation:

• The laser data from SICK is obtained using sicktoolbox_wrapper package [7]. This
package is run in the client computer (robot).

• The laser data is converted to GeoTIFF using Hector Mapping package. The launch file
on host computer uses a transfer function to convert the laser scan data to the map data.

• The GeoTIFF file is visualized using rviz package on host computer.

Figure: 10

Global Localization

Robots navigating in unknown environments have to be localized with respect to a fixed
point so that it is always possible to keep track of the total distance travelled form the origin. This
information might be necessary when the robot has to be navigate back to its origin or to different
points in the map. The global coordinate of the tele-operated robot has been obtained using the
measure tool in rviz on the map created. The measure tool gives the global coordinate
measurement in meters. Since the measure tool doesn’t necessarily measure distance along the

axis or in straight lines, there is possibility for error in the distance measured. The following table
shows the actual distance and the global coordinates measured using the measure tool in rviz.

 x-coordinate
(m)

y-coordinate
(m) % error in x % error in y

Actual Values 20 20 - -

Measured
Global
Coordinates

Trial 1 21.67 19.56 8.35 -2.2

Trial 2 20.47 20.34 2.35 1.7

Trial 3 19.92 19.54 -0.4 -2.3

Table: 2

Figure: 11

Wrench detection
We use the depth image from Kinect RGB-D camera as the input for the purpose of wrench

detection.
To simplify the task, we assume the wrench is placed on a planar surface.

Then after three steps, we can get the position of each wrench, and the relative size order of all
wrenches.
Step 1: Use Least Square Fit Approach to get the equation of the planar surface.
The equation of a plane can be expressed as:

1 2 3 4 0a x a y a z a+ + + =
Define A as
 []1 2 3 4, , , TA a a a a=

Since only 3 coefficient is required, we can force 1A =
And use homogeneous coordinates to represent 3D point:
 [], , ,1 TX x y z=
The equation becomes:
 0TA X =
Now consider an arbitrary point []0 0 0 0, , ,1 TX x y z= and the concerned plane 0TA X =
The distance from 𝑋" to the plane can be written as
 0 0 /

Td A X l=

where

 2 2 2
1 2 3l a a a= + +

Notice 31 2[, ,]aa a
l l l

 is the plane’s normal

Figure: 12

Then the problem becomes to find the value of A to minimize ()22 /T
i id A X l∑ = ∑

Notice that l is identical for every points, than the problem becomes to minimize
2T

iA X∑

 () () ()2

TT T T T T T T T T
i i i i i i iA X A X A X A X X A A X X A A X X A∑ = ∑ = ∑ = ∑ =

where X is a 4 n× matrix, containing all the points need to be fitted
 []1 2 3 X X X X= …

Let L TXX= , L is a 4 4× matrix, then
 ()T T TA XX A A LA=
Based on the knowledge of linear algebra
 () ()min minTA LA λ=

λ is the eigenvalue of L , and its corresponding eigenvector is the value of A to achieve
minimum.
Step 2: Compare the pixels from depth image. Find the difference between the points/pixels of

the planar surface to the other set of points. Use this obtained difference to find out the
location of the rest of the points/pixels with respect to the planar surface.

For a certain point iX from the depth image,

if 0T
iA X = then the point is on the plane

if 0T
iA X > then the point is above the plane along the direction of the normal vector

if 0T
iA X < then the point is below the plane along the direction of the normal vector

Figure: 13

For every pixel in depth image:
 if (it is above the plane)
 set its value as 1
 else
 set its value as 0

Figure: 14

In Figure 14, all pixels with value 1 are represented with blue dots, while other pixels are remain
blank. The blue dot means that at that position under world coordinate system, there is something
above the planar surface, indicating that some part of some wrench is at that position.
Step3: After finding out the pixels or points of the wrenches, the points need to be grouped to

represented different wrenches. And we can also get the relative size order of all the
wrenches by calculating the area of each wrench image.

The algorithm of grouping points is described as below:
For every point with value 1

If it has a neighbor with value 1, then they belong to same object.
The way to calculate the size of wrenches are simply as counting the number of pixels of each
group.

Figure: 15

Results of wrench detection:
The original depth image from Kinect is:

Figure: 16

The result after Step 1 and Step 2.

Figure: 17

The result after Step 3, notice 0 indicates the largest wrench, while 2 indicates the smallest one.

Figure: 18

The following figure shows the result for detecting the smallest wrench of 5 wrenches.

Figure: 19

Figure: 20

3D Point Cloud
A point cloud is a set of data points in a three dimensional coordinate system where the

position of each data point is defines by x, y, z coordinates.
Packages used for complete the task:

1) Openni2_launch
Openni2_launch package contains launch files for using OpenNI-compliant devices in ROS such
as Asus Xtion, Xtion Pro, and multiple version of the Primesense cameras. [11]

2) Rtabmap_ros
The 3D point cloud is obtained using rtabmap_ros. RTAB-Map is a RGB-D SLAM approach based
package that get rgb image and depth image from the Asus Xtion sensor and creates a 3D point
cloud that can viewed in rviz. [9]
Procedure implemented are the following:

1. The color and depth images from the Asus Xtion camera are obtained by running the
launch files of openni2_launch package

2. The 3D point cloud is obtained in rviz using the following command [10]
roslaunch rtabmap_ros rgbd_mapping.launch rtabmap_args:="--delete_db_on_start" rviz:=true
rtabmapviz:=false

Experimental Results

	

Figure:	21:	Initialization	-	Tele-operated	robot	is	set	ready	for	navigation	to	the	wrench	board.	

	

Figure:	22:	ROS	Networking	–	The	above	picture	shows	how	the	Master	Client	communication	is	setup	
on	the	client	computer.	

	

Figure:	23:	Mapping	-	2-Dimensional	map	created	in	rviz	software	using	hector	mapping	as	the	robot	
navigates	to	the	destination.	

	

	

Figure:	24:	Wrench	Detection	-	Robot	is	positioned	to	detect	the	smallest	wrench	on	the	board.	

	

Figure:	25:	Wrench	detection	-		The	above	picture	shows	the	wrench	detection	package	run	on	the	client	
computer.	The	smallest	wrench	is	shown	with	the	largest	number	on	the	left	window.	Therefore,	we	can	

conclude	that	the	smallest	wrench	is	the	second	wrench	from	the	right	in	the	above	case.	

	

Figure	:	26:	Local	Coordinate	Determination	–	The	local	coordinates	of	the	wrench	are	shown	in	the	
terminal	when	the	wrench	detection	package	is	run.	The	three	values	correspond	to	x,	y,	z	distance	of	

the	wrench	in	mm	from	the	camera.	In	the	above	case	(x,	y,	z)	=	(48	mm,	25	mm,	556	mm).	

	
Measured	value/	
Program	value	

x-coordinate	
(mm)	

y-coordinate	
(mm)	

z-	coordinate	

(mm)	

%	error	
in	x	

%	error	
in	y	

%	error	
in	z	

Trial	1	
Actual	value	 15	 20	 495	 13.33	

	

15	

	

1.41	

	Program	value	 17	 23	 502	

Trial	2	
Actual	value	 30	 25	 530	 40	

	

24	

	

1.51	

	Program	value	 42	 31	 538	

Trial	3	
Actual	value	 20	 20	 620	

20	 40	 1.94	
Program	value	 24	 28	 632	

Table:	3	

	

Figure:	27	

Conclusions and Future Work
A tele-operational robot for object detection has been successfully developed. The robot

was successfully controlled wirelessly with the help of the Logitech wireless gaming controller by
the Master computer from the Server Room using the ROS master slave and networking package.
A 2D map of the travelled area was successfully created which also showed the distance travelled
by the robot and also has a global coordinate system which told the position of the robot. The
Asus Xiton was used to obtain the RGB and the depth image and was displayed in master
computer using the rviz-ROS package. The same camera was used to successfully to detect the
smallest wrench from a set of hanging wrenches. Using the code made by the team we were able
to tell the local wrench coordinates with respect to the camera on the UGV.

There is scope for betterment in different aspects of the robot such as Using a faster
internet and Wi-Fi with a larger range. Increasing the speed of GeoTIFF creation for mapping of
the environment. There is also scope for adding a manipulator to the UGV.

We have finish the tele-operation and target (wrench) detection in this project. But in
order to get fully autonomous operation, future work is needed to autonomous navigation by
mapping or visual input. Possible solution including obstacle detection and avoidance by visual
input, or use the 2D map we created. In order to get wrench operation, robotic hand is needed
to actually manipulate the wrench. So we need to build shared coordinate to achieve
autonomous manipulation.

References

[1] Michele Nash-Hoff, 2015, "What Is the Importance of Unmanned Vehicles to Our

Economy? <"http://www.industryweek.com/emerging-technologies/what-importance

unmanned vehicles-our-economy>

[2] 2015, “The UAV – The Future Of The Sky.”< http://www.theuav.com>

[3] 2015, “Google Self-Driving Car Project.” Google Self-Driving Car Project,

<https://www.google.com/selfdrivingcar/>

[4] Ghose, By. "Self-Driving Cars: 5 Problems That Need Solutions." LiveScience. TechMedia

Network, 14 May 2015. Web. 16 Dec. 2015. <http://www.livescience.com/50841-future-of-

driverless-cars.html>

[5] "6 Simple Things Google's Self-Driving Car Still Can't Handle." Gizmodo. Web. 16 Dec.

2015.<http://gizmodo.com/6-simple-things-googles-self-driving-car-still-cant-han-

1628040470>

[6] "Wiki." Hector_mapping. Web. 16 Dec. 2015. <http://wiki.ros.org/hector_mapping>

[7] "Wiki." Sicktoolbox_wrapper. Web. 16 Dec. 2015.

<http://wiki.ros.org/sicktoolbox_wrapper>

[8] "Wiki." Sicktoolbox. Web. 16 Dec. 2015. <http://wiki.ros.org/sicktoolbox>

[9] "Wiki." Rtabmap_ros. Web. 16 Dec. 2015. <http://wiki.ros.org/rtabmap_ros>

[10] "Wiki." Rtabmap_ros/Tutorials/HandHeldMapping. Web. 16 Dec. 2015.

<http://wiki.ros.org/rtabmap_ros/Tutorials/HandHeldMapping>

[11] "Wiki." Openni2_launch. Web. 16 Dec. 2015. <http://wiki.ros.org/openni2_launch>

[12] "Product Description." Sabertooth 2X25 V2 Regenerative Dual Motor Driver. Web. 16

Dec. 2015. <https://www.dimensionengineering.com/products/sabertooth2x25>

[13] "Simulating Arduino Mega2560 in Proteus. - Dms." Dms. 5 Jan. 2015. Web. 16 Dec. 2015.

<http://dostmuhammad.com/simulating-arduino-mega2560-in-proteus/>

 [14] "Safety Laser Scanners." SICK – Safety Laser Scanners – Overview. Web. 16 Dec. 2015.

<http://www.sick.com/group/EN/home/products/product_portfolio/optoelectronic_protective

_devices/Pages/safetylaserscanners.aspx>

[15] "Wiki." ROS/NetworkSetup. Web. 16 Dec. 2015. <http://wiki.ros.org/ROS/NetworkSetup>

Appendix
	

1) “Team	1	-	Master	Computer	Screen”:	This	video	shows	the	screen	of	the	master	computer	during	
the	competition.	

2) “Team	1	 -	Unmanned	Ground	Vehicle”:	 This	 video	 shows	 the	Unmanned	Ground	Vehicle	 as	 it	
travels	to	reach	the	Wrenches	(using	tele-operation)	for	object	detection.

	

