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Abstract—1In this paper we present an approximate con-
troller design methodology for tracking/disturbance-rejection
problems governed by nonlinear delay differential control sys-
tems. The method considered here is a version of the practical
regulation approach developed by the authors in a series of
articles. It is important to note that this approach to regulation
does not require the existence of an exo-system to define
disturbances and signals to be tracked. Therefore, this control
law enables tracking and disturbance rejection for general
reference and disturbance signals. The idea is similar to the
inclusion of a cascade controller design providing a sequence of
increasingly more accurate and better preforming controllers.
The underlying principle derives from well known geometric
methods which rely on the existence of an attractive invariant
manifold in the case when the reference and disturbance signals
are outputs of an autonomous, linear, neutrally stable exo-
system. However, we are able accomplish high performance
tracking without this assumption. References in the literature
are provided for the history of the methodology and proofs
of the error estimates for general systems. We show, in our
included example, that the tracking error can be significantly
enhanced using a single extra step in the sequence of controllers.
In particular, at each step in the cascade controller the error
from the previous step provides the reference signal for the
next step. In this way, at each step the errors are reduced
geometrically.

I. INTRODUCTION AND BACKGROUND

Control systems with delays have a long history and have
been studied by many authors (see, [1], [2], [3], [4], [5],
[6], [7], [8], [9]) and continues to be an important area of
research.

This work is concerned with problems of approximate
asymptotic tracking regulation with measured signals, i.e.,
the case in which the reference and disturbance signals are
known for all time. This is the situation with the classical
servomechanism tracking problem in which the reference
signals are given [10]. If the disturbances are only known
to be outputs of a given exo-system, one can introduce a
disturbance observer [11] to obtain an asymptotic proxy of
the disturbance. Therefore, there is no loss of generality
in assuming that the disturbance is given. We also point
out that there exist many physical applications where the
disturbance can be measured. For example, for a control
system consisting of a compressor on a platform, harmonic
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vibrations provide the main disturbances and they can be
measured. The main requirement for both the reference
signals and disturbances is that they have some degree of
smoothness. The smoother the signals the more accurately
they can be tracked or rejected.

The methodology discussed here does not achieve exact
asymptotic tracking. Rather, we provide a sequence of con-
trollers, similar in spirit to cascade controllers, where the
error at one level becomes the target to track at the next
level. In this way we obtain a sequence of controllers which
provide increasingly more accurate tracking results [12]. At
each step the error is reduced geometrically and seldom more
than one or two iterations are required to achieve a desired
level of tracking tolerance.

The controller presented in Section IV below has evolved
to its current form through a sequence of extensions and
enhancements and has been successfully applied to many
types of tracking and disturbance rejection problems for
distributed parameter systems, see for example, [13], [14],
[15] and the references therein. While this new design
methodology originally derived from geometric methods
involving approximate solution of the regulator equations,
it is no longer limited by the restriction that the reference
and disturbance signals are generated by an external exo-
system. Therefore, we no longer have to deal with solving
the regulator equations. Also, for this reason the concept of
internal model principle is not applicable. The brief Section
IV contains the description of the controller and its sub-
sequent cascade of iterations that produce increasingly more
accurate tracking. In that section the regularization parameter
0 < B <1 and operators Ag and Ly are defined without
much motivation. However, 8 and the operators .Aﬁ and £
were derived systematically in the earlier works and are not
repeated here due to limited space. For the development and
all subsequent details the reader is referred to the survey
article [16], which is freely accessible in the arXiv.org e-print
archive. This article contains a detailed explanation of the
origins of all the operators and equations presented in Section
IV. Therefore, Section IV only contains a brief presentation
of the Regularized Dynamic Controller. We also comment
that the controller presented here is not robust with regard
to parameters of the system. But the authors are currently
developing a robust version of this methodology that will
appear in a separate article.

The organization of the paper is as follows. In Section II
we formulate the class of nonlinear delay systems as they
are usually presented in the literature. In Section III we
present the distributed parameter formulation of the delay
systems and introduce our main assumptions. In Section
IV we present the sequence of regularized dynamic con-
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trollers. See [16] for details on the derivation of this set of
approximate controllers. In Section V we present the main
estimation of the error obtained in the iterative procedure.
Once again, complete details can be found in [13], [14],
[15] and an outline can be found in [16]. Finally, in Section
VI we present a numerical example for a 1D nonlinear
delay equation. Notice that the reference and disturbance
signals are smooth, non-periodic and not generated by an
autonomous exo-system.

II. PROBLEM FORMULATION

For a measurable function x(-) on [—r,+e0), x;(-) denotes
the function in L?((—70),R") given by x,(s) = x(t +s)
for s in [~r,0]. We denote by H'((—r,0),R") the standard
Sobolev space. For Banach spaces X and Y we use the
notation B(X,Y) to denote the vector space of bounded linear
mappings from X to Y.

We consider nonlinear retarded delay differential control
systems of the form

X(t) =Aox(t) + A1x(t —r) + F(x(1))
+Bu(t) + Bqd(t). (1

Here, Ap and A; € B(R",R"), B € B(R™,R"), Bq €
B(R?,R"). We assume that the control u(-) and the dis-
turbance d(-) are bounded measurable functions. The non-
linear term F : R"” — R” is assumed to be a smooth function
satisfying F(0) = 0.

A controlled output is defined by

ye(t) = Cx(2), 2)

where C € B(R",R™) and for ¢ > 0, x(z) is the solution of
system (1). To simplify the presentation in this short paper,
we have assumed (without loss of generality) that the number
of inputs m is the same as the number of outputs.

In the classical approach of solving an asymptotic regu-
lation problem using geometric methods one must solve the
so-called regulator equations (see Lemma 1.3.1. in [17]) in
the lumped linear case, [18] for linear distributed parameter
systems and [19] for nonlinear distributed parameter systems.
In general, these equations are difficult to solve or even to
obtain approximate numerical solutions. This is particularly
true for distributed parameter systems governed by delay and
partial differential equations in higher spatial dimensions,
and even more so for nonlinear systems.

From a practical point of view, all that is really needed is
to be able to obtain a control law that provides sufficiently
accurate tracking and not necessarily exact asymptotic track-
ing. In a series of recent papers [13], [14], [15] an approx-
imation algorithm was developed for obtaining controllers
that deliver highly accurate regulation results, i.e., with very
small asymptotic tracking error for general reference and
disturbance signals. We make use of these results to address
the problem for systems defined by the functional differential
equation (1) above.

III. DISTRIBUTED PARAMETER FORMULATION

In order to present the results from [13], [14], [15] for
nonlinear delay differential control systems, we first for-
mulate the system (1) within the framework of distributed
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parameter control systems. This formulation allows one
to take advantage of distributed parameter control theory
and to employ rigorous numerical schemes that have been
developed for delay systems (see [20] and [21]).

It is well known (see Theorem 4.1 on page 46 in [6]) that
if one supplies initial conditions

X(O) =o€ an €))
x(s) = (P(S), s € [—r,O], (P() € Lz(_rv())an)a (4)

then there exists a unique solution x(z) € R" of (1) and this
solution depends continuously on the initial data (see [6],
[7]). Thus, a natural state space for the delay differential
equation (1) is the product space

Z=R"x L*((—r,0),R") (5)

(see [9], [22]). For the linear problem, the system operator
A is defined on the domain

D(A)={n ()" €Z: ¢() €H'((~1,0),R"),9(0) =n}

(6)
by
Az) = [Aon +A19(=r) ¢'()]". (7
In [22] it is shown that .4 generates a Cyp-semigroup
S(t):Z—Z,t>0 and
SO o) = k@) x()"€Z, (®)

where x(¢) is the solution to the linearized delay differential
equation with initial condition (3)~(4) and x; : [-r,0] — R”
is the “past history” function defined above. Moreover, S(7)
is a compact semi-group for all ¢t > r. If [ @(-)]T € D(A),
then solutions are piecewise C?(0,7) for all T > 0.

The corresponding nonlinear distributed parameter system
is defined on Z by

2(r) = Az(t) + F(z(t)) + Bu(t) + D(¢), )

with controlled output
ye(t) = Cz(1).

Here, A is defined by (6)-(7), B =[B 0], D(z)
[Bad(t) O], Cz(t) = Cx(t) and F : R" x H'(—r,0) — R" is
defined by F[n 9()]T = [F(n) 0],

(10)

If [n @(:)]7 € D(A), then solutions x(z) belong to
PWCP(0,T) for all T >0 and p=0,1,2..., where, for any
interval I C (0,e0), PWCP(I) denotes the space of piecewise
C? functions on /. This means that except for a finite number
of points {f =mr:m € Z*} C I, x(¢) has bounded p™* order
derivatives. We define a semi-norm on PWCP(I) by

L)

lollzp = max
In the case I = [0,o0) we write |@||,. Using this framework
we make the following assumptions:

sup |\ ()] (11)

tel, t#mr

Al The signals y.¢(-) and d(-) are smooth functions of
time on (0,+o0).
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A2 The state operator A is the generator of an expo-
nentially stable semigroup on the Hilbert space Z =
R" x L2 (—r,0).

A3 The classical non-resonance condition: Let G(s) =
C(sI—.A)~'B denote the transfer function of the linear
plant. We assume

G:=G(0)=C(-A "B

is invertible.

Remark 1: Observe that assumption Al is very weak and
is always satisfied if the reference and disturbance signals
are defined by a finite dimensional linear exogenous system.
Also, one can replace A2 by the assumption that the system
is stabilizable. In this case one could first find a stabilizing
state feedback K and then replace A by A+ BIXC. While the
stabilization problem is certainly important, it is not the main
concern in this work. In any case, conditions Al - A3 are
not very restrictive and are typically satisfied for the tracking
problems considered here.

IV. REGULARIZED DYNAMIC CONTROLLER

Due to the special form of the delay system (1)-(2)
and its distributed parameter formulation (9), it is possible
to introduce a somewhat simplified version of the method
described in [13] and [15]. As has already been mentioned in
the introduction, since the publication of these earlier results,
the authors have simplified the formulation and presentation
of the main parts of their work. Namely, the notions of
Dynamic Regulator Equations and Regularized Dynamic
Regulator Equations have been replaced by the more elegant
concept of Regularized Dynamic Controller. While the new
formulation is nicer and simpler, it is completely equivalent
to the one given in the earlier works. As mentioned in the
introduction, in order for the reader to be able to understand
the evolution of the ideas leading to the Regularized Dynamic
Controller the authors have published a summary of the
information on arXiv [16].

Recall that the main objective in this work is to present the
approximate controller and then demonstrate its functionality
in a numerical example.

In the following, a parameter f is introduced to provide a
numerically stable replacement for a certain singular system.
Smaller values produce more accurate tracking but there is
a limit to how small it can be chosen without producing an
unstable system. Again, the details may be found in [16].

With this understanding, for a fixed regularization param-
eter 0 < B < 1, define

(1-
B

Note that {BG~!C is a compact perturbation of A and hence
for B sufficiently close to 1, the operator Ag generates
an exponentially stable semigroup Sg(t). Also, define the
operator Lo:Z —Z

Lo=({I+BG'cA™).

The Regularized Dynamic Controller, as described in [16],
consists of a sequence of approximate controllers, reminis-
cent of a cascade controller, where at each step the error

Ag=(A-¢BG'C), (= B).

12)

13)
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obtained in a given step becomes the reference signal to be
tracked at the next step. In the zeroth step, we choose an
arbitrary small initial condition zo and solve the Regularized
System (14) — (15) given below for the state variable 70. The
resulting control, 70, is then obtained as an output of the
system in (16).

() =AgZ’(t) + Lo (F(zo) +D(t)) + éByref(t), (14)
22(0) =z € Z, (15)
ﬁo(t) 2971 l:;}yref(t) - (ll_sﬁ)czo(t)

+cA™! (]—‘(Zo(t)) —i—D(t))} : (16)

Next, for fixed n > 0, we define the series of state variables
and controls,

n

Yo

j=0

= a7)

Uy = Xn: W,
j=0

where? for all 0 < j < n, the state variable and control, 7/
and w/, satisfy the Regularized System

i ; 1
7 (1) =Ap? (1) + LoF; + BBeH (1), (18)
7(0) =0, (19)
. 1 1— .
w(t) =|zej—1(t)— ( ﬁ)CZf(t)—i—CA_lIFj .0
B B
Here the nonlinear terms are given by
Fj=F(z;t) — F(Z-1)t)), 1)
and the sequence of errors ¢;(r) are defined by
€0 = Vref(t) — C2°, (22)
ej(t)=ej_1(t)—CZ, for j>1. (23)
Solving the cascade of systems for j=0,---,n we obtain the

desired approximate control %,, as described in (17), which
delivers the error e,(¢) in (23), for j =n.

V. ESTIMATE OF THE ERROR

In order to briefly describe the error analysis found in [13],
[14], [15], [16] let us introduce the following operators

K(t)=— %CAgleAﬁ’B, (24)
Ky(t) = —C.AEIeAﬁ’ﬂoD, (25)
H(t)=—Ce™'Ly, Lo=(I+BCA™").  (26)

To simplify many of the estimates obtained later we define
the following class of functions.

Definition 1: We denote by H all functions A(z) in the
form p(r)e”“" with wg >0 and p(r) is a polynomial in 7.
Notice that functions in the set H go to zero exponentially
fast as ¢ goes to infinity.
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Using the operators given in (24) — (26) we can present the
error estimates using explicit formulas for the errors. Namely,
from the first controller (14) — (16) we obtain.

eo(r) =Ho(1) + (K #y,,7) (1) + (Kg +d') (1)
+ (H *Fo)(t),

where we have introduced the convolution operator defined
for any two functions f and g by

(re8)0) = [ s—)e(e)ar,

27)

and where
1
B

decays to 0 exponentially as 7 goes to infinity and is it clearly
bounded above by some function hy € H.

Similarly, for any j > 1, the controllers (18) — (20) produce
the following explicit formulas relating ¢;(¢) to e;_(f).

ej(t) = H(t) + (Kxel_y) (1) + (H+Fj) 1),

and again

Ho(r) := CeB'zg — CAg' e [ Byer(0) + LoD(0)| (28)

(29)

(30)

Hj(t) := —CAg' e’ {éBej_l(O)]
is bounded above by some function 4; € H.

Using a modification of the arguments given in Section
5.2 in [14], we obtain the analog of Theorem 4 in [14]
(see also [16]). In particular, we had to modify the proof
of Theorem 4 to the case where (11) only defines a semi-
norm on PWCP(0,T) to allow for “jumps” in the derivatives
of the solution x(#) that might occur at multiples of the time
delay r.

Theorem 1: Let € denote the Lipschitz constant for F in
Z.If

p=["IK@ldr. D= [ IR @D
5:/ ICe™8" 2o dt, (32)
0
ot t
K= [Nt Blar, P= [ ewsolar, 33
0 0
~ Ke ~ Pe
D =D D, =D 34
<1—£73>’ d d(1_8P>, (34
then
limsup ||eo|| §(D+D)limsup||ymf||1
+(Dg+Dg)limsup ||d||1, (35)
timsup e | <(D+ D) limsup [y,
+ (Dg +Dy)? limsup ||d||2. (36)

For n > 1 the calculations become much more involved
and we do not have simple estimates like the ones in (35)
and (36). For example, at the third iteration, i.e., for n =2,
we do obtain

limsup [|ez|| <(D+D)>limsup ||y, |3
+(Dyg+Dy)? limsup ||d||3 + V2,
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where V; is a small (but complicated) term.

We note that, in the linear case, i.e., when F = 0 in
(1), Theorem 6.1 of Section 6 in [16] establishes that the
sequence of controls uy defined in (17) do indeed converge to
the control u that would produce exact asymptotic tracking.

VI. NUMERICAL EXAMPLE

Example 6.1 (1D Delay System): In this example we con-
sider a problem of tracking regulation with disturbance
rejection for a 1D nonlinear delay differential equation. A
detailed discussion of stability for this model can be found in
[6], [7], [8]. For this example, the reference and disturbance
signals are rather complicated and are not generated by an
exo-system as in the case of classical geometric regulator
theory. Thus, we demonstrate that this new design strategy
allows for tracking and rejection of very general signals that
can not be handled by classical methods.

The numerical results are based on the standard averaging
/ finite volume approximation scheme described in [9], [23].

The state equation is given by

i(t) = apx(t) +arx(t —r) —x(¢) sin(x(t)) +bu(t) +d(t), (37)

with output

yelt) = ex(1). (38)

Here F(x) = xsin(x) is an analytic function. For this example
we set
b=1,

a0:—10, a1:—1, CZl7

r=1,¢(s)=0.5, —-r<s<0.

We consider the problem of tracking a reference signal
yref(t), depicted in Figure 1, and given explicitly by

Yref(t) = sin(a(t) Vit +1), (39
where 1 -

is a smooth function, giving a time dependent frequency that
oscillates between 1 and 2. Clearly, y,. is a smooth bounded
function that is not periodic. Notice that y,.s(0) =sin(3/2) =
0.9975, which is not 1 as it appears to be in Figure 1.

’
0.5
y
r O L
-0.5¢
Ak ; U ] | ]
0 20 40 60 80 100
t
Fig. 1. Reference signal yr¢(r) for 0 <z < 100.

Similarly, we consider the disturbance d(¢) in (37) to be
given by

d(r) = ™V D) gin(r), (41)
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and is shown in Figure 2, below. Notice that these functions
are not solutions of a simple exo-system as in the classical
literature. Observe, also, that assumptions A1-A3 hold and
G l'=—lag+a] ' =1/3.

: "
1
d 0
At
0 1b 26 36 46 56 66 70
t
Fig. 2. The disturbance function d(z) .

To demonstrate the applicability of the method we ran
numerical simulations using three different values of the
regularization parameter, 8 =0.75,0.25 and 0.1. For each j3,
the control u(r) = ug(t) used in solving the system (37) is
1, (1) obtained from applying the cascade controller described
in Section IV for n = 1.

In each case we started with a constant initial condition,
resulting in a distributed parameter system defined by

2(t) =Az(t) + F(z(t)) + Bug(t) + D(t), (42)
2(0) = [(p%] — BZ} . 3)

The main impact of the choice of an initial conditions is
that the transient values near ¢+ = 0 are different; but the
asymptotic values will be essentially the same. All errors
are reported in Table I for both first step (eo(f)) and the
second step (e1(¢)), and for the closed loop system (e(t)).
The results clearly show that after two steps the errors are
greatly reduced and that the error obtained in the closed
loop system, denoted by e(r), matches almost exactly with
the error e (7). One can also see the advantage of choosing
smaller values of 8. However, when 3 becomes too small,
the regularized dynamic controller system becomes unstable.
Therefore, there is a trade-off between improved accuracy
and stability. The table also compares the theoretical bounds
given in (36) with the actual computed error for the full
nonlinear problem. An interesting result for this example is
that, using our control, the disturbance does not effect the
error estimate. In particular, for this example K;(r) =0 in
(25) and so is K =0 in (33). Thus, the disturbance d(t)
has no impact the error bounds, even though it plays an
important role in the design of the controller ug, and it cannot
be ignored.

Therefore the estimates in (35) and (36) are much simpler.
Namely,

limsup ||eg|| < limsup||y-||1 := LD,
limsup ||e1|| < limsup ||y, := LaD?.
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For our particular y,.; and d we have

max_sup |dY) (1) =e.

sup by 0] = 1. max, sup

[0,)

max
j=0,1,2

In Figures 3 and 4, the reference signal y,.() is compared
to the controlled output y.(¢), for B = 0.25. In Figure 3, we
plotted yr(t) for 0 <t <70 and y.(r) for —1 <t < 70,
and the two are almost indistinguishable. In Figure 4, we
zoomed around —1 <t < 2. The largest difference occurs
and is distinguishable only in the proximity of 0. In Figure
5 we plot the control ug(t).

TABLE I
COMPARISON limsup|e(t)|, limsup |e;(¢)| AND L; D? FOR VARYING f8
B =075 B =025 B=0.1
limsupleg(z)| | 1.2912e-02 | 4.2582¢-03 | 1.6979¢-03
limsup|e; (r)| | 2.1045¢-04 | 2.2689¢-05 | 3.6018e-06
limsup|e(z)| | 2.1045e-04 | 2.2689-05 | 3.6018e-06
LyD? 2.0272e-02 | 2.4313e-03 | 4.1351e-04

30 40 50 60 70
t

0 10 20

Fig. 3. Yrs(t) (dashed) and y.(r) (solid) for 0 <1 <70, B =0.25 .

Fig. 4. yrs(t) (dashed) and y.(r) (solid) for r <2, B =0.25 .
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0 10 20 30 40 50 60 70
t

Fig. 5. Plot of the Controller ug(t), B =0.25 .

Figure 6 demonstrates the effectiveness of applying one
extra step in the iterative controller process. In this figure
we plotted ep(7) vs e;(¢), and e; is in general orders of
magnitude smaller than ey. In order to better isolate the
asymptotic behavior of ey and e;, we plotted only times
grater than 5, when all transient contributions to the errors
have already exponentially decayed close to zero.

%107
4+ 'l||
\ ' .
2y i I
\ I it
[ I [
e |1} VA ! ll I
0= VA L T SN
e 1 L
Vi Vil A,
RV
21 e vV
¥
\i
A U

Fig. 6. Plot of eg(r) (dashed) and e (r) (solid) for 5 <t <70, B =0.25 .

VII. CONCLUSION AND FUTURE WORK

In this paper we used a modified version of a regularization
methodology to provide a ‘“cascade” type control law to
improve accuracy for a class of nonlinear tracking prob-
lems defined by delay differential equations. Although the
approach here could be developed without first formulating
the problem as an infinite dimensional distributed parameter
system, this formulation allows for a more direct application
of the existing theory in [13] and [15] and can be eas-
ily implemented by employing standard approximation of
delay control systems. In addition, it is not necessary for
the disturbance or reference signals to be generated by an
exogenous system. The corresponding dynamic control law
is equivalent to a regularized well-posed delay differential
equation which in turn defines the controller. An example
was given to illustrate the method and to show typical
performance achieved by this method.

For the linear case, in the paper [15] the authors present a
complete set of errors estimates for e, (¢) for all n. The prob-
lem of obtaining a complete set of rigorous error estimates
for the full nonlinear system remains open. However, the
numerical results in [13] for PDE systems and the example
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presented here for delay systems suggest it should be possible
to obtain nonlinear error estimates. The authors continue to
work on this problem.
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