Abstract— The reproducing kernel Hilbert space (RKHS) embedding method is a recently introduced estimation approach that seeks to identify the unknown or uncertain function in the governing equations of a nonlinear set of ordinary differential equations (ODEs). While the original state estimate evolves in Euclidean space, the function estimate is constructed in an infi- nite dimensional RKHS and must be approximated in practice. When a finite dimensional approximation is constructed using a basis defined in terms of shifted kernel functions centered at the observations along a trajectory, the RKHS embedding method can be understood as a data-driven approach. This paper derives sufficient conditions that ensure that approximations of the unknown function converge in a Sobolev norm over a submanifold that supports the dynamics. Moreover, the rate of convergence for the finite dimensional approximations is derived in terms of the fill distance of the samples in the embedded manifold. A numerical simulation of an example problem is carried out to illustrate the qualitative nature of convergence results derived in the paper.