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Abstract— The reproducing kernel Hilbert space (RKHS)
embedding method is a recently introduced estimation approach
that seeks to identify the unknown or uncertain function in the
governing equations of a nonlinear set of ordinary differential
equations (ODEs). While the original state estimate evolves in
Euclidean space, the function estimate is constructed in an infi-
nite dimensional RKHS and must be approximated in practice.
When a finite dimensional approximation is constructed using a
basis defined in terms of shifted kernel functions centered at the
observations along a trajectory, the RKHS embedding method
can be understood as a data-driven approach. This paper
derives sufficient conditions that ensure that approximations
of the unknown function converge in a Sobolev norm over a
submanifold that supports the dynamics. Moreover, the rate
of convergence for the finite dimensional approximations is
derived in terms of the fill distance of the samples in the
embedded manifold. A numerical simulation of an example
problem is carried out to illustrate the qualitative nature of
convergence results derived in the paper.

I. INTRODUCTION

Data-driven modeling of uncertain or unknown nonlinear
dynamic systems has been a topic of great interest over the
past few years [1], [2]. The collection of algorithms that
can, in some sense, be viewed as data-dependent methods is
vast. Specific examples include the following: the collection
of studies on the extended dynamic mode decomposition
(EDMD) algorithm and its variants that are based on Koop-
man theory [3], [4]; adaptive basis methods for online
adaptive estimation [5], [6]; fuzzy control methods based
on neural networks [7]; and strategies from distribution-free
learning theory and nonlinear regression [8].

Recently the authors have introduced a novel approach, the
RKHS embedding method in [9]–[12], for the estimation of
uncertain systems. This method likewise can be viewed as a
type of data-dependent algorithm when bases of approxima-
tion are selected along the trajectory of an unknown system.
The RKHS embedding method generalizes estimators used
in conventional adaptive estimation over finite dimensional
state spaces. The approach essentially lifts the learning law
of the estimation scheme to an infinite dimensional RKHS
H of real-valued functions defined over the state space.
The unknown function f(·) that characterizes the uncertainty
in the ordinary differential equations (ODEs) of dynamical
system of is assumed to be an element of the RKHS H . The
resulting overall estimator is thereby defined for both the
states and the unknown function, and it defines an evolution
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in Rd ×H . Since the evaluation functional Ex is linear and
bounded in the RKHS H , the unknown nonlinearity defined
by x 7→ f(x) in the original ODE can be expressed as Exf in
the RKHS embedding formulation, that is, a bounded linear
operator acting on the function f ∈ H . In this way, the
nonlinearity in the original ODEs is avoided in the RKHS
error equations. The trade-off is that one has to conduct
analysis in the infinite dimensional spaces, which is usually
(much) more complicated.

In a way that is analogous to the conventional adaptive
estimation in finite dimensional spaces, the convergence of
the RKHS embedded estimator can be guaranteed with the
satisfaction of a condition of persistence of excitation (PE).
The notion of the PE condition for the RKHS embedding
method has been introduced and studied in the authors’
previous work [13], [14]. Given a subset Ω ⊆ Rd, a necessary
condition for Ω to be PE by a positive orbit Γ+(x0) starting
at x0 is that the neighborhoods of points in Ω are “visited
infinitely often” by the trajectory. This means that Ω must be
a subset of the ω-limit set, in which every point is the limit
of a subsequence of points extracted from the trajectory [14].
A convergence result states that over an indexing set Ω that
is persistently excited, the estimate of the unknown function
converges to the actual unknown function [13]. However,
the function estimate generated by the RKHS embedded
estimator lies in the abstract infinite dimensional RKHS. In
order to compute the practical estimates, a finite dimensional
approximation has to be implemented. The error generated
from the approximation is the major topic of this paper.

Most of time, a discussion about the convergence of
approximations in an RKHS can be transformed into a
discussion about the operator I − PΩn , where PΩn :
HX → HΩn denotes the orthogonal projection onto the
finite dimensional approximant subspace HΩn . Additional
insight, or sometimes a finer analysis, can be obtained by
interpreting this projection error in other well-known spaces.
It is known that many commonly used RKHS are either
embedded in or equivalent to some Sobolev space W τ,2(Rd).
The fact that the family of Sobolev spaces provides a refined
characterization of the smoothness of functions is useful
for estimating the approximation error. In this paper, we
first review carefully the relationship between some types
of RKHS and Sobolev spaces. Then the error equations
for some type of RKHS embedded estimator are recast in
Sobolev spaces to facilitate the error analysis. Using the
recently introduced results on the Sobolev error bounds for
the interpolation operator [15]–[17], the rate of convergence
for the finite dimensional approximation of the RKHS em-
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bedding equations is derived in terms of the fill distance
of the samples Ωn with respect to the subset (or manifold)
Ω. The most succinct form of this new error bound states
that the error decays like O(hs−µΩn,Ω

) where s and µ are the
smoothness indices that depend on the smoothness of the
unknown function, the smoothness of approximations, and
the choice of the reproducing kernel and Sobolev spaces.

II. PROBLEM SETUP

A. Reproducing Kernel Hilbert Spaces

A real RKHS is a Hilbert space HX of real-valued
functions defined over X that admits a reproducing kernel
K : X×X → R. The kernel K(·, ·) has reproducing property
provided for all x ∈ X and f ∈ HX , f(x) = (f,Kx)HX .
By the Moore-Aronszajn theorem [18], the RKHS HX is the
completion of the space spanned by the kernel basis functions
Kx := K(·, x) centered at x ∈ X ,

HX = span{K(·, x) : x ∈ X}.

If Ω ⊆ X is a subset, then the closed subspace HΩ =
span{K(·, x) : x ∈ Ω} is also an RKHS. Here Ω is referred
to as the indexing set of the space HΩ, to distinguish it from
the support X of functions in HΩ ⊆ HX . The whole space
HX can be expressed as the direct sum HX = HΩ ⊕ VΩ. A
function φ ∈ HX belongs to VΩ if and only if φ(x) = 0 for
all x ∈ Ω [18]. This characterization of VΩ is particularly
useful for computing the projection PΩf for f ∈ HX . Since
(I −PΩ)f ∈ VΩ, we must have for all x ∈ Ω,

((I −PΩ)f,Kx)HX = f(x)− (PΩf)(x) = 0.

Thus for any finite discrete set Ωn, the projection operation
is equivalent to the interpolation, PΩn ≡ IΩn : HX → HΩn .

In this paper, we only consider an RKHS that is continu-
ously embedded in the space of continuous functions C(X),
denoted HX ↪→ C(X). Denote the evaluation operator on
HX by Ex : f 7→ f(x) denote. It can be proven that Ex
is a bounded linear operator. One sufficient condition for
HX ↪→ C(X) is that there exists a constant k̄ such that√
K(x, x) ≤ k̄ <∞ for all x ∈ X . In fact, by the Cauchy-

Schwartz inequality we have

|Exf | = |(f,Kx)HX | ≤ ‖f‖HX‖Kx‖HX = ‖f‖HX
√

K(x, x).

If the aforementioned constant k̄ exists, then we have

‖f‖C(X) = sup
x∈X
|Exf | ≤ ‖f‖HX sup

x∈X

√
K(x, x) ≤ k̄‖f‖HX ,

which implies HX ↪→ C(X). In all the following discus-
sions, we assume that such a constant k̄ always exists.

In some cases it is useful to consider the space of
restrictions RΩHX . Clearly, the restriction operator RΩ :
HX → RΩHX is linear and onto. It follows from the fact
that HX := HΩ ⊕ VΩ that RΩVΩ = {0}. In fact, one can
show that RΩ : HΩ → RΩHX is a bijection, and the inverse
operator (RΩ|HΩ

)−1 : RΩHX → HΩ defines an extension
operator, denoted by EΩ. It follows that

PΩ = EΩRΩ : HX → HΩ. (1)

By defining the inner product in RΩHX as (f, g)RΩHX :=
(EΩf,EΩg)HX , we can show that RΩHX is an RKHS. The

associated reproducing kernel is shown to be the restriction
of the reproducing kernel K(·, ·) over Ω×Ω, that is, RΩK :=
K|Ω×Ω [18].

B. RKHS embedded estimator

The governing equation of the partially unknown dynamic
system in this paper has the form

ẋ(t) = Ax(t) +Bf(x(t)), (2)

where A ∈ Rd×d is a Hurwitz matrix, B ∈ Rd×1, and
f : Rd → R is the unknown nonlinear function. The
generality of this formulation is discussed in [13]. The
governing equations of the RKHS embedded estimator have a
structure that is similar to that of a classical adaptive observer
in Euclidean space, but modified to include the evolution of
functions in the RKHS. We set

˙̂x(t) = Ax̂(t) +BEx(t)f̂(t),

˙̂
f(t) = γ(BEx(t))

∗P (x(t)− x̂(t)),
(3)

where f̂(t) ∈ HX is the time-varying function estimate in the
RKHS, Ex(t) denotes the evaluation operator at the state x(t),
and P is the solution to the Lyapunov equation ATP+PA =
−Q for a user-defined positive definite Q ∈ Rd×d. When
we assume f ∈ HX , then the nonlinear term f(x(t)) is
replaced with Ex(t)f . Denote the estimation errors by x̃(t) =

x(t) − x̂(t) and f̃(t) = f − f̂(t), then the error equations
are as follows,

˙̃x(t) = Ax̃(t) +BEx(t)f̃(t),

˙̃
f(t) = −γ(BEx(t))

∗Px̃(t),
(4)

which evolves in the infinite dimensional space Rd×HX . It
has been proven that the equilibrium of the error equations
at the origin is uniformly asymptotically stable under the PE
condition [13], [14].

Finite dimensional approximation is needed for imple-
menting the RKHS embedded estimator. Denote the approx-
imation states by (x̂n, f̂n) ∈ Rd × HΩn . The approximant
space HΩn is a subspace having the form

HΩn = span{K(·, x) : x ∈ Ωn} ⊆ HX ,

where Ωn = {ξi}ni=1 is a finite collection of kernel centers
taken from the positive orbit Γ+(x0) =

⋃
t≥0 x(t) of the

uncertain system. As in [9], the governing equations of the
finite dimensional estimator are

˙̂xn(t) = Ax̂n(t) +BEx(t)P
∗
Ωn f̂n(t),

˙̂
fn(t) = γPΩn(BEx(t))

∗P (x(t)− x̂n(t)).
(5)

Now compare the Eq. 3-5. We call f̃n(t) = f − f̂n(t) the
total error of the function estimate. It is the summation
of the infinite dimensional error f̃(t) = f − f̂(t) and the
approximation error f̄n(t) = f̂(t)−f̂n(t). The corresponding
notations x̃(t) and x̄n(t) are defined accordingly for the
state errors. The infinite dimensional error (x̃, f̃) has been
proven to converge in [13], and in this paper we focus on
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the approximation error (x̄n, f̄n), which is characterized by
the following evolution,

˙̄xn(t) = Ax̄n(t) +BEx(t)f̄n(t), (6)
˙̄fn(t) = −γPΩn(BEx(t))

∗Px̄n(t)

+ γ(I −PΩn)(BEx(t))
∗Px̃(t). (7)

C. Sobolev Spaces

Of particular importance to this paper is when the RKHS
space is either equivalent to, or embedded in, a Sobolev
space. The Sobolev space W τ,2(Ω) is the collection of
functions in L2(Ω, µ) that have weak derivatives of all orders
less than or equal to τ that are also in L2(Ω, µ), where
Ω ⊆ X = Rd is a (sufficiently regular) subset and τ is
an integer. This definitions also makes sense when Ω is a
smooth and compact manifold M , with the weak derivatives
replaced by the covariant intrinsic derivatives on M and
the Lebesgue measure µ replaced by the volume measure
of the manifold M [19]. In general, boundary values or
restrictions of functions in a Sobolev space are described by
trace theorems. A specific trace theorem ( [15], Proposition
2) is applied in this paper to study the restriction of W τ,2(X)
to subdomain Ω. When Ω is a k-dimensional smooth compact
embedded manifold and τ > (d − k)/2, we have the
following identity

RΩW
τ,2(X) ≈W τ−(d−k)/2,2(Ω) (8)

with equivalent norms. As described in [15], the intuition
here is that an amount of “smoothness” is lost due to the
restriction operation onto the low-dimensional submanifold.

Our interest in Sobolev spaces arises when we can show
that a certain RKHS space is isometric with a Sobolev space.
Let K̂ be the Fourier transform of K. If K̂ has the algebraic
decay as

K̂(ξ) ∼ (1 + ‖ξ‖2)−τ , τ > d/2,

then the RKHS HX induced by K is a Sobolev space of the
order τ [15], [18], that is, HX ≈ W τ,2(X) with equivalent
norms. Then by Theorem 5 in [15], the isometry also exists
between the space of restrictions. When Ω ⊆ X is the
submanifold described above, we have

RΩHX ≈ RΩW
τ,2(X) ≈W τ−(d−k)/2,2(Ω). (9)

III. MAIN RESULTS

In the remainder of this paper, we assume that Ω is
a compact, connected, k-dimensional, regularly embedded
Riemannian submanifold of Rd, and that the submanifold Ω
is invariant under the trajectory t 7→ x(t) of the uncertain
system.

We now derive the explicit equations governing the evo-
lution of error over Ω. Using the identity EΩRΩ = PΩ,
it can be shown that the weak differential operator d/dt
commutes with the restriction operator RΩ, that is, for
h ∈ C1([0, T ], HΩ),

RΩḣ(t) =
d

dt
(RΩh(t))

in the weak sense. Since RΩ is a bounded linear operator,
and the evolution t 7→ f̄(t) in Eq. 7 is strongly differentiable,
we know that t 7→ (RΩf)(t) is also strongly differentiable.
This means the derivatives on both sides are interpreted in the
strong sense in the identity above. Now with this conclusion,
we can apply RΩ to both sides of Eq. 7. The resulting error
equation with respect to the restriction RΩf̄n(t) is

d

dt

(
RΩf̄n(t)

)
= RΩ

˙̄fn(t)

= −γRΩPΩn(BEx(t))
∗Px̄n(t)

+ γRΩ(I −PΩn)(BEx(t))
∗Px̃(t). (10)

In order to analyze the approximation error in Eq. 10,
we first review several results from [20], [21] about the
Sobolev error bounds for scattered data interpolation. Let
r and µ be the orders of two Sobolev spaces. Given r > µ,
it follows that W r,2(Ω) ⊆ Wµ,2(Ω). Suppose the function
u ∈ W r,2(Ω) has a set of zero points Ωn (i.e. u|Ωn = 0)
distributed densely enough in Ω. Theorem 1 characterizes
the relationship between ‖u‖W r,2(Ω) and ‖u‖Wµ,2(Ω) in the
term of the fill distance of Ωn in Ω.

Definition 1 (Fill Distance [15]): For a finite set of dis-
crete points Ωn = {ξi}ni=1 in a metric space Ω, the fill
distance hΩn,Ω of Ωn with respect to Ω is defined as

hΩn,Ω := sup
x∈Ω

min
ξi∈Ωn

d(x, ξi),

where d(·, ·) is the metric on Ω.
In the case which is of the most interest to this paper, the set
Ω is a compact smooth Riemannian submanifold in Rd, and
the discrete set Ωn is the set of interpolation points in the
manifold. With this definition in mind, the following theorem
states the relationship between ‖u‖W r,2(Ω) and ‖u‖Wµ,2(Ω).

Theorem 1 ( [15]): Let Ω ⊆ Rd be a smooth k-
dimensional manifold, r ∈ R with r > k/2, µ ∈ N0 with
0 ≤ µ ≤ dre − 1.Then there is a constant hΩ such that
if the fill distance hΩn,Ω ≤ hΩ and u ∈ W r,2(Ω) satisfies
u|Ωn = 0, then

‖u‖Wµ,2(Ω) . hr−µΩn,Ω
‖u‖W r,2(Ω).

We denote the interpolation operator over Ωn by IΩn . For
a function f ∈ W r,2(Ω), the interpolation error (I − IΩn)f
by definition has zeros over Ωn. A corollary is introduced in
[15] to characterize the decaying rate of interpolation error
in the native space (i.e. RKHS).

Corollary 1: Let Ω ⊆ X := Rd be a k-dimensional
smooth manifold, and let the native space HX be continu-
ously embedded in a Sobolev space W τ,2(X) with τ > d/2,
so that ‖f‖W τ,2(Rd) . ‖f‖HX . Define s = τ − (d − k)/2
and let 0 ≤ µ ≤ dse − 1. Then there is a constant hΩ such
that if hΩn,Ω ≤ hΩ, then for all f ∈ RΩ(HX) we have

‖(I − IΩn)f‖Wµ,2(Ω) . hs−µΩn,Ω
‖f‖RΩ(HX).

With this error bound in mind for interpolation and pro-
jection, we now turn to the main result of this paper.

Theorem 2: Suppose that Ω is a compact, connected, k-
dimensional, regularly embedded Riemannian submanifold
of X := Rd, RΩ(HX) ↪→ W s,2(Ω) for some s > k/2, and
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the orbit of the unknown system Γ+(x0) ⊆ Ω. Then there
exist two constants a, b > 0 such that for all t ∈ [0, T ],

‖x̄n(t)‖2 + ‖RΩf̄n(t)‖2W s,2(Ω)

≤ ebt
(
‖(I −ΠΩn)RΩf̂0‖2W s,2(Ω)

+ a

∫ t

0

‖(I −ΠΩn)RΩKx(ζ)‖2W s,2(Ω)dζ

)
.

Here ΠΩn : RΩHX → RΩHΩn denotes the projection
operator defined over the space of restrictions RΩHX onto
the space RΩHΩn .

Proof: By Eq. 6 and 10 we have

d

dt

(
‖x̄n(t)‖2 + ‖RΩf̄n(t)‖2Ws,2(Ω)s

)
= ( ˙̄xn(t), x̄n(t))

+ (x̄n(t), ˙̄xn(t)) + 2

(
RΩf̄n(t),

d

dt
(RΩf̄n(t))

)
Ws,2(Ω)

= ((A+AT )x̄n(t), x̄n(t)) + 2(BEx(t)f̄n(t), x̄n(t))︸ ︷︷ ︸
term 1

+ 2γ
(
RΩ(I −PΩn)E∗x(t)B

TP x̃(t),RΩf̄n(t)
)
Ws,2(Ω)︸ ︷︷ ︸

term 2

+ 2γ
(
−RΩPΩnE

∗
x(t)B

TP x̄n(t),RΩf̄n(t)
)
Ws,2(Ω)︸ ︷︷ ︸

term 3

.

In several of the steps that follow, we use conclusions
that result from the assumptions that certain spaces are
continuously embedded in others. By choosing certain types
of reproducing kernels, it can be guaranteed that the injection
j : RΩ(HX) ↪→ W s,2(Ω) is a continuous embedding for
some s > k/2. By the Sobolev embedding theorem the
injection i : W s,2(Ω) ↪→ C(Ω) is also continuous, which
implies

|Es,x(f)| := |f(x)| ≤ ‖if‖C(Ω) ≤ ‖i‖‖f‖W s,2(Ω),

and it follows that each evaluation functional Es,x :
W s,2(Ω)→ R is uniformly bounded by ‖i‖. By assumption
we have that the forward orbit Γ+(x0) ⊆ Ω, and we conclude
that term 1 can be bounded by the expression

|(BEx(t)RΩf̄n(t), x̄n(t))|
≤ ‖B‖‖i‖‖x̄n(t)‖‖RΩf̄n(t)‖W s,2(Ω). (11)

We bound term 2 by∣∣∣∣(RΩ(I −PΩn)E∗x(t)B
TPx̃(t),RΩf̄n(t)

)
W s,2(Ω)

∣∣∣∣
≤ ‖B‖‖P‖‖x̃(t)‖‖(I −ΠΩn)RΩKx(t)‖W s,2(Ω)

‖RΩf̄n(t)‖W s,2(Ω). (12)

We next consider term 3, which satisfies the inequality∣∣∣∣(RΩPΩnE∗x(t)B
TPx̄n(t),RΩf̄n(t)

)
W s,2(Ω)

∣∣∣∣
≤ k̄‖j‖‖RΩ‖‖B‖‖P‖‖x̄n(t)‖

× ‖RΩf̄n(t)‖W s,2(Ω). (13)

Combining all the terms above, we obtain

d

dt

(
‖x̄n(t)‖2 + ‖RΩf̄n(t)‖2W s,2(Ω)

)
≤ γ‖B‖2‖P‖2‖x̃(t)‖2‖(I −ΠΩn)RΩKx(t)‖2W s,2(Ω)

+
(
2‖A‖+ ‖i‖‖B‖

)
‖x̄n(t)‖2

+
(
γk̄2‖j‖2‖RΩ‖2‖B‖2‖P‖2

)
‖x̄n(t)‖2

+
(
2γ + ‖i‖‖B‖

)
‖RΩf̄n(t)‖2W s,2(Ω).

Let the constants a, b be defined as follows.

a := γ‖B‖2‖P‖2 sup
ζ∈[0,T ]

‖x̃(ζ)‖2,

b := max{2γ + ‖i‖‖B‖,
2‖A‖+ ‖i‖‖B‖+ γk̄2‖j‖2‖RΩ‖2‖B‖2‖P‖2}.

When we integrate the inequality above, it follows that

‖x̄n‖2 + ‖RΩf̄n(t)‖2W s,2(Ω)

≤ ‖x̄n(0)‖2 + ‖RΩf̄n(0)‖2W s,2(Ω)

+

∫ t

0

a‖(I −ΠΩn)RΩKx(ζ)‖W s,2(Ω)dζ

+

∫ t

0

(
‖x̄(t)‖2 + ‖RΩf̄n(ζ)‖2W s,2(Ω)

)
dζ.

But since f̂0 ∈ HΩ, we know that PΩf̂0 = EΩRΩf̂0 = f̂0,
and RΩΠΩn f̂0 = ΠΩnRΩf̂0. Thus

‖RΩf̄n(0)‖W s,2(Ω) = ‖(I −ΠΩn)RΩf̂0‖W s,2(Ω).

Combining the above inequalities yields

‖x̄n(t)‖2 + ‖RΩf̄n(t)‖2W s,2(Ω)

≤ ebt‖(I −ΠΩn)RΩf̂0‖2W s,2(Ω)

+ aebt
∫ t

0

‖(I −ΠΩn)RΩKx(ζ)‖2W s,2(Ω)dζ.

The next corollary combines the results of Theorem 2 and
Corollary 1 to obtain the error rates in terms of the fill
distance of samples in the manifold.

Corollary 2: Suppose that Ω is a compact, connected,
regularly embedded k-dimensional submanifold of X := Rd,
the kernel K is selected so that HX ↪→ W τ,2(X) for
τ > d/2, define s := τ−(d−k)/2, and let µ ∈ [k/2, dse−1].
Then we have

‖x̄n(t)‖2 + ‖RΩf̄n(t)‖2Wµ,2(Ω)

≤
(
‖RΩf̂0‖2RΩ(HX) + ak̄2t

)
eb̃th

2(s−µ)
Ω,Ωn

.

Proof: We first observe that under the stated hypotheses
the native space RΩHX ↪→ Wµ,2(Ω). For any two positive
r1 ≥ r2 > 0 the associated Sobolev spaces are a continuous
scale of spaces with W r1,2(Ω) ↪→ W r2,2(Ω). This implies
that W s,2(Ω) ↪→ Wµ,2(Ω) since s ≥ µ. Also, the trace
theorem yields

‖f‖Wµ,2(Ω) .‖f‖W s,2(Ω) = ‖EΩRΩf‖W s,2(Ω)

. ‖EΩf‖W τ,2(X) . ‖f‖RΩHX ,
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where the constants in the above string of inequalities depend
on ‖EΩ‖, ‖RΩ‖, and the norm of the embedding of HX

into W τ,2(X). Combining these results yields RΩHX ↪→
Wµ,2(Ω) with µ ≥ k/2. We can now apply the results of
Theorem 2 for the choice s = µ and write

‖x̄n(t)‖2 + ‖RΩf̄n(t)‖2Wµ,2(Ω)

≤ ebt‖(I −ΠΩn)RΩf̂0‖2Wµ,2(Ω)

+ aebt‖(I −ΠΩn)RΩKx(t)‖2Wµ,2(Ω),

≤ ebth2(s−µ)
Ω,Ωn

‖RΩf̂0‖2RΩHX

+ atebth
2(s−µ)
Ω,Ωn

(
sup
t∈[0,T ]

‖RΩKx(t)‖RΩHX

)2

for each t ∈ [0, T ] by Theorem 11 of [15]. The bound now
follows since

sup
t∈[0,T ]

‖RΩKx(t)‖RΩHX = sup
t∈[0,T ]

‖Kx(t)‖HX ≤ k̄.

IV. NUMERICAL SIMULATION

Corollary 2 gives a rate of convergence for finite dimen-
sional approximations of the RKHS embedded estimator. The
rate of convergence depends on the density of the sample
set Ωn in the manifold Ω, which is characterized by the fill
distance hΩn,Ω. In this section, this rate of convergence is
illustrated qualitatively using numerical simulations. Follow-
ing the formulation of Eq. 2, the governing equations of the
unknown system are selected to be[

ẋ1(t)
ẋ2(t)

]
=

[
0 1
−1 0

] [
x1(t)
x2(t)

]
+

[
x2

1(t)
0

]
, (14)

where B = [1, 0]T and f(x1, x2) = x2
1. Here we assume

the linear coefficient matrix A0 is known. By adding and
subtracting a selected Hurwitz term Ax(t), the governing
equations of the original system can be written as

ẋ(t) = Ax(t) + (A0 −A)x(t) +BEx(t)f.

Since A0 and A are known, the term (A0 − A)x(t) can be
canceled in the error equation. The governing equations of
the finite dimensional RKHS embedded estimator are chosen
as

˙̂xn(t) = Ax̂n(t) + (A0 −A)x(t) +BEx(t)P
∗
Ωf̂n(t),

˙̂
fn(t) = γPΩ(BEx(t))

∗P (x(t)− x̂n(t)).

This choice yields the error equations that have the form
studied in this paper.

The phase portraits of the original system in Eq. 14 are
shown in Fig. 1. A first integral of the unknown system is

Φ(x) := (x2 + x2
1 − 0.5)e2x2 = c. (15)

The stability of the system depends on the initial condition
(x1(0), x2(0)). When the initial condition x(0) is such that
the constant c < 0, the system is stable and the positive orbit
Γ+(x(0)) itself is an invariant manifold Ω := {x ∈ R2 :
Φ(x) = c}. The manifold Ω is a smooth, one dimensional,
regularly embedded submanifold in the phase space R2. In

Fig. 1: Phase trajectories of the actual system.

this example, we choose the trajectory for of which the
constant c = −0.1 in Eq. 15. The samples Ωn = {ξi}Ni=1
are taken uniformly along the manifold with respect to the
intrinsic metric of the manifold Ω. Although in practice,
such sampling procedure cannot be accomplished without
knowing the manifold a priori, it is not difficult to picture
that as t→∞, the set {x(ti)}Ni=1 gradually fills the manifold
Ω. The samples are used to construct the approximant RKHS
HΩn := span{K(·, x) : x ∈ Ωn}. The Sobolev-Mateŕn kernel
Kν is used to induce the RKHS. The subscript ν denotes the
order of the kernel. If ν > d/2, then all the functions in
the RKHS HX induced by Kν over X = Rd also belong to
every Sobolev space W τ,2(Rd) where τ > 2ν−d/2 [15]. The
general expression of Kν is defined using a Bessel function,
but when ν = p + 1/2, p ∈ N the kernel has the following
closed-form expressions

K3/2(x, y) =

(
1 +

√
3r

l

)
exp

(
−
√

3r

l

)
,

K5/2(x, y) =

(
1 +

√
5r

l
+

5r2

3l2

)
exp

(
−
√

5r

l

)
,

where r = ‖x−y‖, and l is the scaling factor of length [22].
Fig. 2 shows the contour of the estimation error |f(x) −

f̂n(x)| in Rd using when N = 100 and ν = 5/2. The result
is as expected. The estimate of error in the unknown function
is close to zero along the manifold Ω = {x ∈ R2 : Φ(x) =
−0.1}. The rate of convergence with respect to the number
of samples N is shown in Fig. 3-4. Note that the manifold
Ω is a closed curve, and the samples are taken uniformly in
metric. As a result, the fill distance hΩn,Ω ∼ N−1. With this
in mind, by Corollary 2 we have the following relationship

‖RΩ(f̂(t)− f̂n(t))‖Wµ,2(Ω) ∼ N−(s−µ).

In this example, the set Ω is PE, so f̂(t) → f over Ω. The
RKHS HX ↪→W τ,2(R2) where τ < 2ν− 1. Thus the space
of restrictions RΩHX ↪→ W τ−0.5,2(Ω), and s ≤ τ − 0.5 <
2ν−1.5. On the other hand, we must have µ ∈ [k/2, dse−1]
so that W s,2(Ω) ↪→Wµ,2(Ω) ↪→ C(Ω). In this way, we have

‖f − f̂n(t)‖C(Ω) = sup
x∈Ω
|f(x)− (f̂n(t))(x)| ∼ N−(s−µ).

From the analysis above, we obtain the rates of convergence
for the C(Ω)-norm. When ν = 3/2, the order s − µ ≥ 1.
When ν = 5/2, the order s−µ ≥ 2. Taking the logarithms for
both sides of the equation above, the values calculated above
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Fig. 3: Conv. rate for ν = 3/2.
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Fig. 4: Conv. rate for ν = 5/2.

are the worst case of slope bounds in Fig. 3-4. In both figures,
the actual error curves are below the slope bounds, which
validates the conclusions in Corollary 2. One assumption for
the Theorem 1 to hold is that hΩn,Ω must be smaller than a
threshold. This assumption may explain the flat error curve
when N ≤ 30.

V. CONCLUSIONS

This paper considers the practical problem of formulating
finite dimensional approximations for the RKHS embed-
ded apative estimator. The convergence of approximations
is proven, and the rates of convergence are derived. By
selecting the reproducing kernel that has algebraic decaying
Fourier transform, the induced RKHS is embedded in or
equivalent to a Sobolev space. The error equation of ap-
proximation is recast in the Sobolev space, and bounds on
the error of interpolation in Sobolev spaces are applied to
analyse the error of approximation. When the trajectory of
the unknown system concentrates in a compact, regularly
embedded submanifold of the state space, the rate of con-
vergence for finite dimensional approximation is derived in
terms of the fill distance of the samples. It is shown that as
the samples becomes increasingly dense in the submanifold,
the approximation error decays accordingly.
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