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Abstract— This paper introduces two new notions of persis-
tence of excitation (PE) in reproducing kernel Hilbert spaces
(RKHS) that can be used to establish convergence of function
estimates generated by the RKHS embedding method. The two
PE conditions are proven to be equivalent provided a type
of uniform equicontinuity holds for the composition operator
g 7→ g ◦ x, where t 7→ x(t) is the unknown state trajectory.
The paper then establishes sufficient conditions for the uniform
asymptotic stability (UAS) of the error equations of RKHS
embedding in term of these PE conditions. The proof is self-
contained and treats the general case. Numerical examples are
presented that illustrate qualitatively the convergence of the
RKHS embedding method where function estimates converge
over the positive limit set, a smooth, regularly embedded
submanifold of the state space.

I. INTRODUCTION

Adaptive online estimation for uncertain systems governed
by nonlinear ordinary differential equations (ODEs) is now
a classical topic in estimation and control theory. Systematic
study of this topic has a long history, and many of the
first principles can be found in texts on adaptive estimation
and control theory [1]–[3]. In general, convergence of state
estimates in such schemes is easier to establish than to
guarantee parameter convergence. Parameter convergence
refers here to estimates of the (real) constants that char-
acterize an unknown function appearing in the uncertain
governing ODEs. Beginning with analyses such as in [3]–
[5], sufficient conditions for parameter convergence in terms
of various definitions of persistence of excitation in finite
dimensional state spaces have been studied carefully. These
initial investigations have inspired numerous generalizations
of PE conditions for evolution laws in Rd, with notable
examples including [6]–[9]. The analysis of PE conditions
is further extended for evolution equations defined in terms
of a pivot space structure in Banach and Hilbert spaces in
references [10]–[14].

This paper studies novel persistence of excitation (PE)
conditions that play a role in recently introduced method
of reproducing kernel Hilbert space (RKHS) embedding for
adaptive estimation of uncertain, nonlinear ODE systems
[15]–[17]. The RKHS embedding method analyzes the un-
certain nonlinear system of ODEs by replacing them with
a distributed parameter system (DPS). While the usual ap-
proach such as in the texts above describe evolution of states
and parameters in the finite dimensional space Rd×Rn, the
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RKHS embedding method considers evolution of states and
function estimates in Rd×H with H an infinite dimensional
RKHS of functions.

Some of the key theoretical questions regarding the RKHS
embedding method have been studied in references [15]–
[19]. The well-posedness of the infinite dimensional evo-
lution is studied in [15], [16], including the study of the
existence and uniqueness of solutions and their continuous
dependence on the initial conditions. To implement the
RKHS embedding method in practice, the finite dimensional
approximation is necessary. Elementary convergence results
for approximation are obtained in [15], [16]. In the sub-
sequent discussion [18], the relationship between the PE
condition in RKHS and the positive limit set of the unknown
system is studied, including some cases when the positive
limit set is a manifold. As for practical application, an
early example is given in [19] where the strategy of RKHS
embedding is applied to an L1 adaptive control problem. In
reference [17], the basic theory is extended and adapted to
construct a consensus estimator, and that analysis extends
the method to the estimation of vector-valued functions.

For classical adaptive estimation, the PE condition is
understood as ensuring the positivity of integrated regressors
over parameter space. In the RKHS embedding method, the
PE condition is cast in term of the evaluation functional
Ex : f 7→ f(x) for x ∈ X . Here we study various alternative
statements of the PE conditions in the class of uniformly
embedded RKHS. When the RKHS is uniformly embedded
in the space of continuous functions, we find that many of the
well-known classical statements about the PE condition in
finite dimensional spaces have analogous counterparts in the
infinite dimensional RKHS. The PE condition is established
as a sufficient condition for the UAS of the error equations
for the RKHS embedding method in [15]–[17], [19], in some
instances. However, the conclusion there is proven only for
a very specific case, and the authors have found that one of
the simpler proofs in [15] is unfortunately incorrect. In this
paper, we find an alternate self-contained proof which treats
the general case.

A. Overview of New Results

The conventional notion of persistence of excitation is
defined to study the uniform asymptotic stability of error
equations that have the form[

˙̃x(t)
˙̃α(t)

]
=

[
A BΦT (x(t))

−µΦ(x(t))BTP 0

] [
x̃(t)
α̃(t)

]
, (1)
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with x̃(t) = x(t) − x̂(t) ∈ Rd the error in state estimates
x̂(t) of the true trajectory x(t), α̃(t) = α∗ − α̂(t) ∈ Rn the
error in the parameter estimates α̂(t) of the true parameters
α∗, A ∈ Rd×d a Hurwitz matrix, B ∈ Rd×1, P ∈ Rd×d the
unique positive definite solution of the Lyapunov equation
ATP + PA = −Q for some fixed positive definite Q ∈
Rd×d, and Φ : Rd → Rn a collection of regressors for the
system. The associated, conventional PE condition follows
in Definition 1. This condition is a sufficient condition for
the UAS of the error Equations 1. Details are discussed in
reference [3]–[9].

Definition 1: (PE in Rn) A trajectory t 7→ x(t) ∈ Rd
persistently excites a family of regressor functions Φ : Rd →
Rn if there exist constants T0,∆, γ > 0 such that∫ t+∆

t

vTΦ(x(τ))ΦT (x(τ))vdτ ≥ γ > 0 (2)

for each t ≥ T0 and v ∈ Rn with ‖v‖ = 1.
In this paper, we introduce two new definitions of per-

sistence of excitation that are used in conjunction with the
RKHS embedding method.

Definition 2: (PE.1) The trajectory t 7→ x(t) ∈ Rd
persistently excites the indexing set Ω and the RKHS HΩ

provided there exist positive constants T0, γ, δ, and ∆, such
that for each t ≥ T0 and any g ∈ HΩ with ‖g‖HΩ

= 1, there
exists s ∈ [t, t+ ∆] such that∣∣∣∣∣

∫ s+δ

s

Ex(τ)gdτ

∣∣∣∣∣ ≥ γ > 0. (3)

Definition 3: (PE.2) The trajectory t 7→ x(t) ∈ Rd
persistently excites the indexing set Ω and the RKHS HΩ

provided there exist positive constants T0, γ, and ∆, such
that ∫ t+∆

t

(
E∗x(τ)Ex(τ)g, g

)
HΩ

dτ ≥ γ > 0 (4)

for all t ≥ T0 and any g ∈ HΩ with ‖g‖HΩ
= 1.

These two definitions are analogous to those studied in the
classical scenario in [3], [4], but here they are expressed in
terms of the evaluation operator Ex rather than the regressor
functions Φ : Rd → Rn. We define the composition operator
U associated with the trajectory t 7→ x(t) to be the mapping
U : g 7→ g ◦x. Let S̄1 := {g ∈ HΩ : ‖g‖HΩ

= 1} denote the
unit sphere in RKH subspace HΩ. The first primary result
of this paper is stated in terms of the collection of functions
U(S̄1) := {g(x(·)) : ‖g‖HΩ = 1, g ∈ HΩ}. We establish in
Theorems 1 and 2 that

“PE.1 =⇒ PE.2,” and
“PE.2 and U(S̄1) uniformly equicontinuous =⇒ PE.1.”

This theorem can be viewed as a type of generalization of
the results in [3], [4] to the DPS that arises from the RKHS
embedding method. Essentially, the assumption that U(S̄1)
is uniformly equicontinuous eliminates in the infinite dimen-
sional case the possibility of “pathological” rapid switching
that has been studied and commented on in detail in [3], [4]
for the finite dimensional case.

The role of these PE conditions above is studied for the
following DPS that is associated with estimation errors in
the RKHS embedding formulation:[

˙̃x(t)
˙̃
f(t)

]
=

[
A BEx(t)

−µ(BEx(t))
∗P 0

] [
x̃(t)

f̃(t)

]
. (5)

Here x̃(t) ∈ Rd, A ∈ Rd×d Hurwitz, and B ∈ Rd×1 are
defined as above, but now f̃(t) = f− f̂(t) ∈ HΩ is the error
of the function estimates f̂(t) of the true function f . The
second fundamental result of this paper is a detailed proof
in Theorem 3 of the fact that

“PE.1 =⇒ the error equations are UAS in Rd ×HΩ”.

We should note that references [15]–[17] establish this fact
as a special case of the much more general analysis in [10]
when P = I and A is in fact negative definite, but here we
treat the general situation. Also, we feel that the proofs in
this paper are substantially simpler than that in [10], more
closely resemble the classical analyses in [3], [4], and are of
independent interest.

B. Notation

In this paper, ‖ · ‖ denotes the Euclidean norm on Rd,
‖ · ‖op is the operator norm, and ‖ · ‖HX

is the norm on
a Hilbert space HX of real-valued functions over X . The
inner product on Rd and HX are written as (·, ·) and (·, ·)HX

respectively. We define ‖ · ‖HΩ := ‖PΩ(·)‖HX
where PΩ is

the HX -orthogonal projection onto HΩ ⊆ HX . Note that
‖ · ‖HΩ

is a norm in the RKH subspace HΩ.

II. RKHS EMBEDDING METHOD

A. Review of RKHS

To define the RKHS embdding method, we briefly review
some of the defining properties of an RKHS. A real RKHS
HX over a subset X is a Hilbert space of functions over X . It
is defined in terms of an admissible kernel KX : X×X → R
that has what is known as the reproducing property. This
property is given in terms of the basis function KX,x centered
at x ∈ X , which is defined from the identity KX,x(·) :=
KX(x, ·). The kernel KX is said to have the reproducing
property provided f(x) = Exf = (KX,x, f)HX

for each x ∈
X and f ∈ HX . The RKHS HX is then defined as the closed
linear space HX = span{KX,x : x ∈ X} [20].

When X is a subset of Rd, or when X happens to be
a certain type of manifold, many choices of admissible
kernels exist. Among all the popular choices, the Gaussian
kernel might be the most well-known kernel. See [21] for
summaries of possible kernels over (subsets of) Rd and [22]
for kernels over some choices of manifolds. In this paper, we
only consider the RKHS for which we have the uniformly
continuous embedding HX ↪→ C(X). This embedding holds
provided that there is a constant c > 0 such that ‖f‖C(X) ≤
c‖f‖HX

for all f ∈ HX . Therefore, a sufficient condition
for uniform embedding is that a constant k̄ exists such that
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KX(x, x) ≤ k̄2 <∞ for all x ∈ X . In this case we have

|f(x)| = |Exf | = |(KX,x, f)HX
| ≤ ‖KX,x‖HX

‖f‖HX

≤
√

KX(x, x)‖f‖HX
≤ k̄‖f‖HX

.

The condition that KX(x, x) ≤ k̄2 thereby guarantees that
‖Ex‖op ≤ k̄, that is, the evaluation operator is uniformly
bounded in x ∈ X . This property will be frequently used in
the following proofs.

When HX is an RKHS, we can define the closed subspace
HΩ = span{KX,x : x ∈ Ω} when Ω ⊆ X . The subset Ω
is also called the indexing set of the RKHS HΩ ⊆ HX .
We define the orthogonal decomposition HX = HΩ ⊕ VΩ

with VΩ = H⊥Ω . Using the definition of RKHS HΩ and the
reproducing property, it is not difficult to show that for all
ψ ∈ VΩ, the evaluation ψ(ξ) = 0 for all ξ ∈ Ω.

B. The RKHS Embedding Method

In this paper, when we refer to the classical problem of
adaptive estimation for an unknown nonlinear set of ODEs,
we assume that the state trajectory t 7→ x(t) ∈ Rd satisfies
the set of equations

ẋ(t) = Ax(t) +Bf(x(t)) (6)

where, as in the error equations, A ∈ Rd×d is a known
Hurwitz matrix, B ∈ Rd×1 is known, and f : Rd → R
is unknown and to be identified. Under the assumption that
f(·) =

∑n
i=1 α

∗
i φi(·) for a set of given regressor functions,

φi : Rd → R, the choice of estimator and learning law

˙̂x(t) = Ax̂(t) +BΦT (x(t))α̂(t)

˙̂α(t) = µ
[
BΦT (x(t))

]T
P (x(t)− x̂(t))

(7)

induce the error equations in Eq. 1.
In the RKHS embedding formulation, Eq. 6 is interpreted

as the functional equation

ẋ(t) = Ax(t) +BEx(t)f, (8)

and the corresponding estimation equation and learning law
are

˙̂x(t) = Ax̂(t) +BEx(t)f̂(t),

˙̂
f(t) = µ(BEx(t))

∗P (x(t)− x̂(t)),
(9)

which induce the dynamics of the error in Rd×HΩ in terms
of Eq. 5.

III. MAIN RESULTS

Theorem 1: The PE condition in Definition 2 implies the
one in Definition 3 for all g ∈ HΩ.

Proof: If the condition in Definition 3 holds, there exist
constants T0, γ, δ, and ∆, such that for each t ≥ T0 and any
g ∈ HΩ with ‖g‖HΩ = 1, there exists s ∈ [t, t + ∆] such
that ∣∣∣∣∣

∫ s+δ

s

Ex(τ)gdτ

∣∣∣∣∣ ≥ γ > 0.

By the definition of adjoint operator, the integral in Eq. 4
equals∫ t+∆

t

(
E∗x(τ)Ex(τ)g, g

)
HΩ

dτ =

∫ t+∆

t

(
Ex(τ)g, Ex(τ)g

)
dτ,

≥
∫ s+δ

s

(
Ex(τ)g

)2
dτ.

It is assumed that t 7→ x(t) is continuous, and g : x 7→
g(x) is continuous since HΩ ↪→ C(X). Hence, g ◦ x is also
a continuous mapping. Moreover, the interval [t, t + ∆] is
compact, so g(x(t)) is bounded in this interval. Therefore,
the function Ex(·)g = g(x(·)) ∈ L2([t, t + ∆],R), and the
same applies to the integrand

(
Ex(t)g

)2
. By Cauchy-Schwarz

inequality, we have∫ s+δ

s

1dτ

∫ s+δ

s

(
Ex(τ)g

)2
dτ ≥

(∫ s+δ

s

∣∣Ex(τ)g
∣∣ dτ)2

,

≥

∣∣∣∣∣
∫ s+δ

s

Ex(τ)gdτ

∣∣∣∣∣
2

≥ γ2.

which then implies∫ t+∆

t

(
E∗x(τ)Ex(τ)g, g

)
HΩ

dτ ≥ γ2/δ > 0.

Theorem 2: Suppose that the PE condition in Definition
3 holds and the family of functions U(S̄1) is uniformly
equicontinuous. Then the PE condition in Definition 3 (PE.2)
implies the one in Definition 2 (PE.1).

Proof: Suppose the condition in Definition 3 holds. For
each t ≥ T0 and g ∈ HΩ with ‖g‖HΩ

= 1, we have∫ t+∆

t

(
E∗x(τ)Ex(τ)g, g

)
HΩ

dτ =

∫ t+∆

t

g(x(τ))2dτ ≥ γ.

By the mean value theorem, there exists a ξ ∈ [t, t+∆] such
that

∫ t+∆

t
g(x(τ))2dτ = g(x(ξ))2∆. Thus we have

g(x(ξ))2∆ ≥ γ ⇒ |g(x(ξ))| ≥
√
γ/∆. (10)

For ε = 1
2

√
γ/∆, since g ∈ U(S̄1) and is uniformly

equicontinuous, there exist δ = δ(ε) > 0 such that |s−ξ| < δ
implies |g(x(s)) − g(x(ξ))| < ε = 1

2

√
γ/∆ for all g(x(·)).

In other words, for all s ∈ [ξ − δ, ξ + δ], we have

|g(x(s))− g(x(ξ))| < 1

2

√
γ/∆,

which implies that

|g(x(s))| > |g(x(ξ))| − 1

2

√
γ/∆ ≥ 1

2

√
γ/∆.

This implies that g(x(s)) does not change its sign in the
interval [s, s+ δ]. Therefore,∣∣∣∣∣

∫ s+δ

s

Ex(τ)gdτ

∣∣∣∣∣ ≥ δ

2

√
γ/∆ > 0.
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The following lemma is one intuitive way that the uniform
equicontinuity condition can be achieved. It relies on the fact
that a uniformly bounded derivative can be used to show a
function is Lipschitz continuous [23].

Lemma 1: Let g ∈ S̄1, that is, g ∈ HΩ with ‖g‖HΩ = 1.
The family of functions U(S̄1) is defined as stated above.
Suppose there is a constant L > 0 such that ‖∂g(ξ)/∂ξ‖ ≤
L for all x ∈ Ω and g ∈ S̄1. Then U(S̄1) is uniformly
equicontinuous.

Proof: The norm of evaluation operator ‖Ex‖op is uni-
formly bounded due to the uniform embedding, which then
guarantees that ‖ ˙̃x(t)‖ ≤ c0 for all t ≥ 0. Then the lemma
is an immediate consequence of Lemma 3.1 in [23].

It is clear that the PE.2 is stronger than PE.1. However,
the statement of PE.2 seems better suited for “geometric”
interpretations. One established result [18] is that the con-
dition PE.2 can be directly used to relate the indexing set
Ω, the RKHS HΩ, and the positive orbit Γ+(x0) of system
in Eq. 6 in an intuitive manner. That is, the positive orbit
Γ+(x0) persistently excites HΩ implies the indexing set Ω
is a subset of the ω-limit set of Γ+(x0). Readers are referred
to see [18] for a detailed discussion.

Theorem 3: Assume that the trajectory t 7→ x(t) persis-
tently excites the RKHS HΩ in the sense of Definition 2
(PE.1), the initial condition f̂(0) ∈ HΩ, f ∈ HΩ, and x(t) ∈
Ω for all time t. Then the estimation error system in Eq. 5 is
uniformly asymptotically stable at the origin. In particular,
we have limt→∞ ‖x̃(t)‖ = 0 and limt→∞ ‖f̃(t)‖HΩ

= 0.
Proof: Without loss of generality, we assume that µ = 1

in Eq. 5. We first establish that f̃(t) ∈ HΩ, so that the
expression ‖f̃(t)‖HΩ

makes sense. Suppose that we integrate
the update law in Equations 5 and take the inner product of
the result with an element g ∈ VΩ,

(f̂(t), g)HΩ = (f̂(0), g)HΩ +

∫ t

0

µ(Kx(τ), g)HΩB
TPx̃(τ)dτ.

As mentioned in Section II, if g ∈ VΩ, then g(ξ) = 0 for
all ξ ∈ Ω. If the trajectory x(τ) ∈ Ω for each τ ∈ [0, t],
then the second line above is equal to zero. If in addition,
the initial condition f̂(0) ∈ HΩ, it follows from the fact that
f̂(0) ∈ HΩ that f̂(t) ∈ HΩ for all time t.

Now we prove limt→∞ ‖x̃(t)‖ = 0. Consider the
candidate Lyapunov function V (t) = (x̃(t), P x̃(t)) +
(f̃(t), f̃(t))HX

, where P ∈ Rd×d is the unique positive
definite solution to the Lyapunov equation ATP+PA = −Q
for Q � 0. Clearly, V (x) is bounded below by zero. We take
the time derivative of V (t) along any trajectory of Eq. 5, then
apply the Lyapunov equation.

V̇ (t) =
(
x̃(t), (ATP + PA)x̃(t)

)
+ 2
(
BEx(t)f̃(t), P x̃(t)

)
+ 2
(
f̃(t),−(BEx(t))

∗Px
)
HX

= −
(
x̃(t), Qx̃(t)

)
.

Since Q is positive definite, V̇ (t) is less than zero, which
implies V (t) is nonincreasing. For all t ≥ t0, V (t) ≤ V (t0).
We conclude that Eq. 5 is stable.

Integrating V̇ (t), we have the following equation that
holds for all t ≥ t0,

∫ t
t0

(
x̃(τ), Qx̃(τ)

)
dτ = V (t0) − V (t).

Note that V (t0) <∞ and that V (t) ≥ 0 is nonincreasing. By
sending t to infinity, we can bound the following improper
integral∫ ∞

t0

(
x̃(τ), Qx̃(τ)

)
dτ = V (t0)− lim

t→∞
V (t) <∞. (11)

We claim that the integrand
(
x̃(t), Qx̃(t)

)
is uniformly

continuous with respect to time t. Then by Barbalat’s
lemma [23], [24], it can be deduced from Eq. 11 that
limt→∞

(
x̃(t), Qx̃(t)

)
= 0, which implies

lim
t→∞

‖x̃(t)‖ = 0. (12)

Now we show that
(
x̃(t), Qx̃(t)

)
is uniformly continuous.

Since for all t ≥ t0, it holds that

V (t) = (x̃(t), P x̃(t)) + (f̃(t), f̃(t))HX
≤ V (t0) <∞.

It follows that ‖x̃(t)‖ and ‖f̃(t)‖HX
are both bounded. As

stated in Section II, the RKHS HX is uniformly embedded
in the continuous functions, so ‖Ex‖op ≤ k̄. Thus from Eq.
5, we have

‖ ˙̃x(t)‖ ≤ ‖A‖op‖x̃(t)‖+ ‖B‖‖Ex(t)‖op‖f̃(t)‖HX
<∞.

Thus ‖ ˙̃x(t)‖ is uniformly bounded, which further im-
plies that d

dt

(
x̃(t), Qx̃(t)

)
is bounded uniformly. Therefore,(

x̃(t), Qx̃(t)
)

is Lipschitz continuous with respect to t,
which implies the uniform continuity.

According to Eq. 12, for all ε > 0, there exists T such that
for all t ≥ T , ‖x̃(t)‖ < ε. Now we consider the PE condition.
Let g = f̃(T )/‖f̃(T )‖HΩ be the unit-norm function in Eq.
3. If PE condition in Definition 2 is satisfied, there exists
s ∈ [T, T +∆] such that

∣∣∣∫ s+δs
Ex(τ)gdτ

∣∣∣ ≥ γ > 0. Consider
the error in state x̃(s+ δ). It can be bounded by integrating
the state equation in Eq. 5.

‖x̃(s+ δ)‖ =

∥∥∥∥∥x̃(s) +

∫ s+δ

s

Ax̃(τ) +BEx(τ)f̃(τ)dτ

∥∥∥∥∥ ,
≥

∥∥∥∥∥
∫ s+δ

s

BEx(τ)f̃(T )dτ

∥∥∥∥∥︸ ︷︷ ︸
term 1

−

∥∥∥∥∥x̃(s) +

∫ s+δ

s

Ax̃(τ)dτ

∥∥∥∥∥︸ ︷︷ ︸
term 2

−

∥∥∥∥∥
∫ s+δ

s

BEx(τ)(f̃(τ)− f̃(T ))dτ

∥∥∥∥∥︸ ︷︷ ︸
term 3

. (13)

In term 1, note that f̃(T ) = g‖f̃(T )‖HΩ , and ‖f̃(T )‖HΩ

is a constant. The coefficient matrix B ∈ Rd×1 is in fact a
d-dimensional vector, so ‖B‖op = ‖B∗‖op = ‖B‖. In term
2, note that ‖x̃(t)‖ < ε for all t ≥ T . Then we have

term 1 =

∣∣∣∣∣
∫ s+δ

s

Ex(τ)gdτ

∣∣∣∣∣ ‖B‖‖f̃(T )‖HΩ
,

≥ γ‖f̃(T )‖HΩ
. (14)

term 2 ≤ ‖x̃(s)‖+

∫ s+δ

s

‖A‖op‖x̃(τ)‖dτ,

≤ ε+ ‖A‖opδε. (15)

4542

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on November 12,2022 at 23:40:14 UTC from IEEE Xplore.  Restrictions apply. 



For term 3, we first derive a bound on f̃(τ)− f̃(T ), which
can be obtained by integrating Eq. 5.

‖f̃(τ)− f̃(T )‖HΩ
=

∥∥∥∥∫ τ

T

(BEx(ξ))
∗Px̃(ξ)dξ

∥∥∥∥
HΩ

,

≤
∫ τ

T

‖B∗‖op‖E∗x(ξ)‖op‖P‖op‖x̃(ξ)‖dξ,

≤ k̄ε(τ − T )‖B‖‖P‖op.

If we let c1 = ‖B‖‖P‖op, then ‖f̃(τ)−f̃(T )‖HΩ
≤ c1k̄ε(τ−

T ). In term 3, note that T ≤ s ≤ T + ∆. This means

term 3 ≤
∫ s+δ

s

‖B‖‖Ex(τ)‖op‖f̃(τ)− f̃(T ))‖HΩdτ (16)

≤ k̄‖B‖
∫ s+δ

s

c1k̄ε(τ − T )dτ,≤ c1k̄2ε‖B‖
(1

2
δ2 + ∆δ

)
.

Let c2 = ‖B‖k̄2
(

1
2δ

2 + ∆δ
)
. Then term 3 ≤ c1c2ε.

Substituting Eq. 14-16 into Eq. 13 gives a lower bound of
x̃(s+ δ),

‖x̃(s+ δ)‖ ≥ γ‖f̃(T )‖HΩ − (1 + ‖A‖opδ)ε− c1c2ε. (17)

On the other hand, s+ δ ≥ T , so we have ‖x̃(s+ δ)‖ < ε.
Thus an upper bound on ‖f̃(T )‖HΩ

can be derived from Eq.
17 as follows.

‖f̃(T )‖HΩ <
ε

γ

(
(2 + ‖A‖opδ) + c1c2

)
. (18)

Now we have shown that f̃(T ) is O(ε) for some T that
depends on ε. However, it follows from this that f̃(T ′) is
O(ε) for all T ′ ≥ T . To see why this is so, choose any
T ′ > T . It is still true that ‖x̃(t)‖ < ε for all τ ≥ T ′ > T .
We can repeat all of the steps above for τ ≥ T ′ to conclude
that ‖f̃(T ′)‖HΩ is O(ε). From this we eventually conclude
that limt→∞ ‖f̃(t)‖HΩ

= 0. Therefore, the system in Eq. 5
is uniformly asymptotically stable.

IV. NUMERICAL SIMULATION

This paper studies the DPS defined by the error Equations
5, which are infinite-dimensional. Practical implementation
requires finite-dimensional approximations, a careful treat-
ment of which exceeds the limits of this paper. See [15],
[16] for some preliminary discussions of the theory of
approximations. In this section, we study the qualitative
behavior of finite-dimensional approximations, since these
are suggestive of the limiting guarantees of this paper. In
particular, the analysis of the RKHS embedding method
gives additional insights that have no counterpart in the usual
finite-dimensional framework.

In particular, the results of this paper can be combined with
those in [18]. Reference [18] shows that, with a judicious
choice of the kernel KX , a persistently excited index set is
contained in the positive limits set of the original system.
This suggests that that one logical choice of a reasonable
finite-dimensional approximation can be based on the bases
{KX,zj}nj=1 located at the centers Ωn := {zj}nj=1 that are
asssumed to constitute a good sampling of the positive limit
set ω+(x0) of the orbit Γ+(x0) :=

⋃
τ≥0 x(τ). In this way,

we seek estimates that converge in HΩ, that is, they converge
over the indexing set Ωn ⊆ Ω ≡ ω+(x0).
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Fig. 1. Phase portrait of the original system

To illustrate the convergence of RKHS embedding method,
an example of an undamped, nonlinear, piezoelectric oscil-
lator is studied [25], [26]. The governing equations of the
oscillator, after a single bending mode approximation, have
the form [

ẋ1

ẋ2

]
=

[
x2

− k
mx1 − kn,1

m x3
1 −

kn,2

m x5
1

]
, (19)

where k is the electromechanical stiffness, m is the mass, and
kn,1, kn,2 are the higher order electromechanical stiffness
coefficients. In the governing equations above, we assume
all the linear terms are known, and the nonlinear term
f(x) = −kn,1

m x3
1 −

kn,2

m x5
1 is to be identified. In this case,

the Sobolev-Matern kernel is applied, the RKHS associated
with which is uniformly embedded in the space of continuous
functions [21]. From the conclusion of [18], a persistently
excited set Ω must be contained in the positive limit set of
the system ω+(x0), which we approximate by the centers
Ωn = {zj}nj=1.

Fig. 1 shows the typical positive limit sets of this system.
The limit sets form limit cycles around the equilibrium
at the origin, which is prototypical for such conservative
electromechanical oscillators.

When the approximation of infinite dimensional adap-
tive estimator based on the RKHS embedding technique
is implemented for this problem, estimates of the un-
known nonlinear function f(x) are obtained in HΩn

=
span{KX,zj : j = 1, · · · , n}. Fig. 2 shows the error between
the actual function and function estimate over the state space.
Qualitatively, convergence of the function estimate occurs
over the positive limit set of a particular trajectory. Fig.
3 shows the contour of the function error along with the
positive limit set. Both the figures show that the function
estimate in HΩ converges to the actual function over the
indexing set, which when persistently excited is a subset of
the positive limit set.
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Fig. 2. Error in function estimate

Fig. 3. Error contour

V. CONCLUSIONS

In this paper, two definitions of PE for the adaptive estimator
based on RKHS embedding are given for different purposes,
both applied to the family of functions U(S̄1) = {g ◦ x(·) :
g ∈ HΩ, ‖g‖HΩ

= 1}. The paper establishes the equivalence
conditions for the two conditions. Condition PE.1 naturally
implies PE.2, and PE.2 implies PE.1 when the family of
functions U(S̄1) is uniformly equicontinuous. The paper
then proves that PE.1 is a sufficient condition for the UAS
of the error equations that arise in the RKHS embedding
framework. This constitutes a sufficient condition for the
convergence of function estimates. A numerical example is
given to show qualitatively the convergence behavior of the
RKHS embedding method.
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