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Summary
This article studies the distributed parameter system that governs adaptive
estimation by mobile sensor networks of external fields in a reproducing ker-
nel Hilbert space (RKHS). The article begins with the derivation of conditions
that guarantee the well-posedness of the ideal, infinite dimensional governing
equations of evolution for the centralized estimation scheme. Subsequently, con-
vergence of finite dimensional approximations is studied. Rates of convergence
in all formulations are established using history-dependent bases defined from
translates of the RKHS kernel that are centered at sample points along the agent
trajectories. Sufficient conditions are derived that ensure that the finite dimen-
sional approximations of the ideal estimator equations converge at a rate that is
bounded by the fill distance of samples in the agents’ assigned subdomains. The
article concludes with examples of simulations and experiments that illustrate
the qualitative performance of the introduced algorithms.
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1 INTRODUCTION

In this article we propose an infinite-dimensional, continuous-time technique for the adaptive estimation of external
fields g ∶  → R with  ⊂ Rd. Here we use the term external field to describe a spatially varying function over a domain
traversed by an estimating agent. Typical examples include unknown environments such as the depth map of a lake or
a spatial field representing pollutant concentrations. In order to reconstruct and monitor the unknown external field, a
team of sensing vehicles is deployed to take measurements at discrete sample locations, from which the continuous map
is estimated.

An extensive body of literature exists that solves this problem using Gaussian process (GP) regression. The sparse
online Gaussian process (SOGP) method proposed by Csató and Opper is an early attempt to overcome the high computa-
tional cost of GP regression as the number of samples grows.1 Recent research in this area focuses on the scheme in which
the samples are taken sequentially. Various approaches are incorporated to improve the efficiency of exploration, such as
Bayesian optimization,2 gradient-based methods,3 and information-based methods.4 Another approach for reducing the
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1932 GUO et al.

computation expense of GP regression is to leverage the multi-agent system and compute the regression in the distributed
manner.5-7

The methods above are formulated using machine learning theory or Bayesian estimation, and they are most com-
monly understood in terms of regression in discrete time where samples are obtained from an independent and identically
distributed (IID) random process in discrete time. In this article we view the problem from the perspective of online adap-
tive estimation in continuous time. The governing estimation problem is cast as a distributed parameter system (DPS)
in an infinite dimensional state space. New results are derived for the adaptive estimation by a team of N agents of such
external fields in a reproducing kernel Hilbert space (RKHS).

Throughout this article, we assume each sensor agent (labeled by superscripts i = 1, … ,N) follows a trajectory
t → xi

t ∈ Ω
i in a domain Ωi

⊂ Ω ⊆ Rd and gathers local samples yi
t = g(xi

t) of the unknown scalar field. Here the subset
Ω ⊆ Rd is the domain of interest. We can think of Ωi as the subdomain assigned to agent i. By Xt ∶= [x1

t , … , xN
t ]

T we
denote the assembly of all of the states of the agents in the team. In contrast to many estimation formulations based on
(finite dimensional) optimization,8 we assume the unknown function g ∈  , with an RKHS of real-valued functions
over  . It is well-known that the evaluation operator Ex ∶  → R and the multi-sampling operator EX ∶  → RN

defined via

Ex ∶ g → g(x) ∈ R, EX ∶ g → [g(x1), … , g(xN)]T ∈ R
N
, (1)

are both linear and bounded as mappings on  . With the operator EX defined as above, the sampling process of the
agent team is modeled as Yt = EXt g = [g(x

1
t ), … , g(xN

t )]
T . In this article, the proposed scheme for adaptive estimation is

expressed as an evolution in the infinite-dimensional RKHS  . In particular, we denote the collective estimate of the
unknown function as ĝ(t) ∶= ĝ(t, ⋅) ∈  . The governing equation of the centralized update law is written as

̇̂g(t) = 𝛾E∗
Xt
(Yt − EXt ĝ(t)) = 𝛾E

∗
Xt

EXt

⏟⏟⏟

(t)

(g − ĝ(t)), with ĝ(0) = ĝ0 ∈  , (2)

where E
∗
Xt

denotes the adjoint of EXt . This is a type of DPS on the generally infinite dimensional state space  . From a
practical perspective, a realizable estimator is obtained in this article by constructing a finite dimensional approximation
ĝL(t) of the ideal estimate ĝ(t) in terms of L basis elements.

The proposed approach generalizes some classical approaches to adaptive consensus estimation in continuous time,
specifically those that make an assumption of fixed dimensionality at the outset. Such is the case if it is assumed that
g is expressed in terms of a finite number of regressors, for instance, in a classical formulation of adaptive estima-
tion in Euclidean spaces. We will see that the final, overall definition of a pragmatic realizable algorithm based on
Equation (2) requires two primary steps. First, we derive conditions that ensure the existence and uniqueness of the
ideal estimate ĝ(t) that solves Equation (2) for all t ∈ R+. We address in detail the convergence of the ideal estimate
ĝ(t, ⋅) to the unknown function g as t →∞ by introducing a novel persistency of excitation (PE) condition in the RKHS
 . This argument employs a definition of PE in the weak topology on the RKHS  and is the first of its kind for
this class of evolution problems in an RKHS. It is possible to view this strategy as an adaptation of the weak PE anal-
yses that have been used in the study of DPS associated with some types of partial differential equations (PDEs) as
in References 9-11. For the DPS in Equation (2) we exploit the uniform embedding of the RKHS space  → ()
and the proof of output convergence to simplify some of the arguments of convergence in the weak topology in this
case.

Second, we precisely describe the construction of finite dimensional approximants ĝL(t) of the ideal estimate ĝ(t): this
approximation process leads to realizable algorithms. We introduce a specific strategy for the choice of the finite dimen-
sional basis and investigate the factors that affect convergence of finite dimensional approximations of the ideal model.
The strategy described in this article assumes that bases used for finite dimensional approximation are built using sam-
ples collected (previously) along the agent trajectories. In this sense it is possible to interpret the method of the article as
a data-driven method, somewhat akin in philosophy to Koopman methods. As in the general class of Koopman methods,
the original system is finite dimensional and nonlinear, but the DPS defining the estimator is infinite dimensional and
linear. The difference here, of course, is that we formulate the estimation problem as one of online, continuous-time adap-
tive estimation using a DPS as opposed to an offline, discrete-time problem that is most often attacked using techniques
from regression or optimization. Note that the term adaptive estimation is used since we can draw parallels between the
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GUO et al. 1933

proposed scheme and the class of adaptive parameter estimation techniques that are designed to simultaneously estimate
the system states and the unknown parameters in a governing ODE equation.12

The theoretical considerations of the article culminate in a precise error bound that is powerful and intuitive. We show
that the error in approximating the ideal team estimate is bounded by a power of the fill distance of the samples collected
along the agent trajectories. To be specific, we suppose that agent i for 1 ≤ i ≤ N collects L samples Ξi

L ⊂ Ω
i from their

assigned subdomainΩi, and we define the fill distance hΞi
L,Ω

i of the finite setΞi
L inΩi as hΞi

L,Ω
i ∶= supx∈Ωi min

𝜉𝓁∈Ξi
L

d (x, 𝜉𝓁)
where d is the metric on  . We then guarantee that the realizable estimate, corresponding to the finite dimensional
approximant, satisfies

||ĝ(t) − ĝL(t)|| ≤ 
(

max
1≤i≤N

hs
Ξi

L,Ω
i

)

.

where s > 0 is a parameter that describes the smoothness of the functions in . The precise definition of s depends on
the power function of the kernel that induces  , and we discuss later how to choose the bases and kernels that define
 and thus determine s. Overall then, the formulation described in this article enables us to improve on conclusions that
are ordinarily achieved in finite dimensional estimation: we prove convergence of estimates of the unknown function g
in terms of a norm defined on a RKHS of real-valued functions. The error of approximation converges (geometrically in
terms of the smoothness parameter s) as a function of the fill distance of the samples in the assigned domains.

Apart from the obvious difference that it is more difficult to treat infinite dimensional estimation problems in general,
there are two features that must be addressed that have no counterpart in estimation in Euclidean spaces. One difficulty
is, of course, choosing the function space F used to measure convergence in practice. Since all norms are equivalent on
Rd, any norm is, theoretically speaking, as good as another in the study of the finite dimensional estimation problem. The
selection of a particular norm might simplify proofs or be convenient for calculations, but derivation of convergence of
estimates in one norm implies convergence in any norm. This is most definitely not the case in treating infinite dimen-
sional estimation problems, and the choice of the topology on F comes to assume a critical role in these formulations. It
is entirely conceivable that an estimation problem is well-posed and convergent in one choice of function space but not
in another. Even if the estimates are convergent, the rates of convergence will depend generally on the specific function
space choice F. One of the contributions of this article is to formulate the consensus estimation problem in continuous
time in such a way that a reasonable collection of spaces F can be selected in practice. This article describes a broad family
of such methods.

The second difficulty, which is coupled to the first, is that any practical estimation method must be implementable.
This demands that issues of approximation be addressed. Again, this has no counterpart in estimation in Euclidean spaces.
It makes sense to discuss the rate of convergence in time of either finite or infinite dimensional estimation problems.
However, for the infinite dimensional estimation problem, we must also address rates of convergence in space. As the pro-
posed estimator ĝ evolves in the generally infinite dimensional space F, we obtain a computationally tractable estimator
by projecting ĝ onto a finite dimensional subspace of dimension L. The resulting estimator is of the form

ĝL(t, x) ∶=
L∑

𝓁=1
𝛼L,𝓁(t)𝜙L,𝓁(x), (3)

where {𝜙L,𝓁}L
𝓁=1 ⊂ F denote a set of user-specified basis functions and {𝛼L,𝓁(t)}L

𝓁=1 ⊂ R denotes a set of time-varying coef-
ficients. Indeed, estimators of the general form (3) have been studied in data-dependent applications within the context
of spline theory,13-15 kernel ridge regression,16-18 and Gaussian process regression.1,19,20 However, in these contexts the
coefficients {𝛼L,𝓁(t)}L

𝓁=1 ≡ {𝛼L,𝓁}L
𝓁=1 are time-invariant. When we say that we address rates of convergence in space, we

mean that we describe the rate of convergence of the error ||g − ĝL(t, ⋅)||F as a function in the infinite dimensional space
F. It turns out that the selection of bases {𝜙L,𝓁}L

𝓁=1 and the choice of the function space F are intimately connected here.
In short then, we can state one general contribution of this article: this article formulates a specific strategy for choosing
the space F, bases {𝜙L,𝓁}L

𝓁=1, and an evolution equation that defines a learning law such that convergence, and in some
instances rates of convergence, as measured in || ⋅ ||F can be deduced.

Even though the study of multi-agent centralized estimation in infinite dimensional problems is less mature than the
corresponding study of finite dimensional problems, there are some contexts where aspects of this problem have been
studied. When the environmental modeling task is carried out by a team of agents that communicate with each other, it
can be advantageous to view the team of agents as a mobile wireless sensor network (WSN). The agents traverse the region

 10991115, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/acs.3442 by L

ehigh U
niversity L

inderm
an L

ib, W
iley O

nline L
ibrary on [12/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1934 GUO et al.

of interest to collect measurements of the unknown external field, and these measurements are directly used to update a
real-time model of the surrounding environment. One family of methods of this type consist of estimation problems where
a discrete dynamic model is induced using optimization at each time step in a learning theory or regression framework.
One of the often cited foundations of these methods include the body of work in References 21-23, which consist of
single-agent formulations of discrete dynamics in a learning theory formulation. A good survey of the generalization to
agent teams that communicate over networks can be found in References 24-26 and the references therein. As a whole,
these methods construct discrete models of dynamics that are realized via the solution of optimization problems at each
time step. The work by Predd et al.24,27 investigates how the communication topology influences the convergence of such
formulations of discrete dynamics via learning theory. While the work in References 24,27 studies the convergence of
discrete dynamics when the information shared over the network takes the form of samples and pointwise errors, the
authors in References 28,29 study discrete dynamics where the learning theory problem is formulated in terms of a saddle
point problem. These methods differ from the approach in References 24,27 in that the information that is exchanged
over the communication network consists of approximations of costates, not samples. This formulation also addresses
rates of convergence (in space) of the discrete time estimates, a topic not covered in References 24,27. More recently, the
work in References 5,30 gives examples where machine learning approaches that define discrete dynamics in time via
the repeated solution of an optimization problems.

In addition to the discrete time formulation of adaptive estimation summarized above, there also is a body of work that
studies infinite dimensional consensus estimation problems for various classes of DPSs generated by families of PDEs.
Problems of this type are studied in the family of papers.9-11 These formulations are quite general and are formulated for
systems where the evolution laws for the agents are defined in terms of Gelfand triples, with the constituent operators
satisfying some standard boundedness and coercivity properties for common DPS. In these papers the agent states evolve
in an infinite dimensional state space, in contrast to the situation here. The system studied in this article is much simpler,
and much of the analysis in this article is aimed at establishing just how much simpler questions of well-posedness are to
establish for the system at hand. This is the thrust of Section 3.1.1 that makes use of the embedding →  to provide
an arguably simpler proof of existence and uniqueness. Also, the discussion of rates of convergence in this article, obtained
using certain types of bases defined in terms of the kernel that defines the RKHS, as of yet has no analog in these papers
on PDE methods. Thus, while the system in this article is less general than the PDE systems, the conclusions are stronger.
It is of interest to investigate whether similar rates of convergence could be deduced for the more complex systems where
the agent states evolve in an infinite dimensional space (as well as the function estimate).

1.1 Overview of the methodology

The centralized adaptive estimation strategy defines the collective estimate ĝ(t) ∶= ĝ(t, ⋅) ∈  which evolves
according to

̇̂g(t) = 𝛾E∗Xt
(Yt − EXt ĝ(t)) = 𝛾E

∗
Xt

EXt

⏟⏟⏟

∶=(t)

g̃(t), subject to ĝ(0) = ĝ0, (4)

with E
∗
X ∶ Rd →  the adjoint of EX for each X ∈ N . The estimate ĝ(t) ∈  is referred to as the ideal, infinite dimen-

sional estimate since the evolution law in (4) is not constrained to a particular finite dimensional space. It follows that
the ideal estimation error g̃(t) ∶= g − ĝ(t) satisfies

̇̃g(t) = −(t)g̃ = −𝛾
N∑

i=1
E∗xi

t
Exi

t
g̃ = −𝛾

N∑

i=1
g̃(xi

t)𝔎(x
i
t, ⋅). (5)

Later, in Section 3.2 we discuss a finite dimensional, history-dependent approximation ĝL of the ideal estimate ĝ. Note
that there is one function estimate t → ĝ(t) in this centralized approach, but it is constructed using samples taken by
all agents. We consider the setting in which all agents can communicate with a single computational node that collects
samples from various agents and builds an approximation of the solution of Equation (4). Indeed, if the communication
bandwidth is sufficient and all agents have enough computing power, each agent i can build, using shared samples, the
approximation ĝi(t) ≡ ĝ(t) that is identical and obtained using the same equation.
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GUO et al. 1935

1.2 Our contributions

The primary result is stated in Theorem 1: a unique global solution t → ĝ(t) to Equation (4) exists on all R+ provided
the RKHS  is continuously embedded in the space of continuous functions,  → (). The result is obtained by
following standard fixed-point arguments that are familiar in the study of ODEs. This result is qualitatively quite similar
to the related problem addressed in References 31,32 where RKHS embedding is used to frame the adaptive estimation
of a nonlinear function appearing in the ODEs with respect to the state x(t). Here, unlike,31,32 the unknown function is
an external field and is not a function that influences the agent trajectory t → xi(t) for agent i.

Once conditions are derived that guarantee the existence and uniqueness of the governing infinite dimensional
equations, the remainder of the article concentrates on the study of convergence of the estimates to the unknown
function g ∈  . The analysis of convergence begins with the study of when the ideal, centralized estimate ĝ(t) that
solves Equation (4) converges to the unknown function g as t →∞. As in other adaptive estimation problems in Rd

for ODEs, or in some problems for PDEs, this step relies on the suitable definition of persistency of excitation condi-
tions in an RKHS. Again, such PE conditions have been studied for the related problem of estimating an unknown
scalar function appearing in the governing ODEs in References 31,32, but not for the estimation of an external
field.

In contrast to prior work, in this article we explore weak PE conditions that are stated in terms of the weak topology
on for adaptive estimation of an external scalar field. The strategy based on the weak topology is qualitatively similar
to that in Reference 33 for the study of certain classes of PDEs as in References 9-11, but the details of the proofs must be
modified to exploit properties of the RKHS and the RKHS embedding formulation. This characterization of convergence
is made precise by defining a weak norm | ⋅ |w on  and defining a linear subspace W ⊆  that consists of functions
that, in some sense, “fail to be weakly persistently excited.” It is later shown that any solution g̃(t) of the governing ideal
error equation (5) is contained in Br(0), the closed ball in of radius r centered at the origin, for a suitably large r > 0.
By introducing the weak distance from g to Ŵ ∶= W

⋂
Br(0) as

dw(g, Ŵ) ∶= inf
h∈Ŵ

|g − h|w,

we show in Theorem 3 that the ideal error g̃(t) ∶= g − ĝ(t, ⋅) satisfies

lim
t→∞

dw(g̃(t), Ŵ) = 0.

That is, asymptotically in time, the ideal error g̃(t) approaches the set of functions that fail to be weakly persistently excited
in . Moreover, convergence in the weak topology to W enables some further, intuitive understanding of the persistency
condition. If the entire space is weakly persistently excited, which means that Ŵ = {0}, then we prove in Theorem 1
that we have the pointwise convergence

lim
t→∞

ĝ(t, x) = g(x),

for all x ∈  .
A practical (computationally tractable) estimator is obtained by approximating ĝ in a finite dimensional space L.

Thus, the second phase of studying the convergence of estimates to the unknown function g is rooted in the construction
of ĝL(t). The total error g̃L(t) ∶= g − ĝL(t) is then bounded as

||g̃L(t)||
⏟⏟⏟

total error

∶= ||g − ĝL(t)|| ≤ ||g − ĝ(t)||
⏟⏞⏞⏟⏞⏞⏟

||g̃(t)||=ideal error

+ ||ĝ(t) − ĝL(t)||
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

||gL(t)||=approximation error

.

From the analysis of the above error bound, we state conditions that guarantee the ideal error converges to zero as t → ∞.
The finite dimensional estimate ĝL(t) can be shown, for suitable choices of the finite dimensional spacesL, to converge
to the ideal estimate ĝ(t) as L →∞. Rates of convergence that measure how quickly the approximation error ||gL(t)||
converges to zero as the dimension of L increases are derived in Theorem 4 and Corollary 2. The sharpest results are
given in Corollary 2. In the corollary, we suppose that each agent gathers discrete samples at the inputs Ξi

L ⊂ Ω
i
⊆ Ω ⊂  ,

and that these inputs are used to construct the space of approximants
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1936 GUO et al.

L ∶= span{𝔎(𝜉i
L,𝓁 , ⋅) ∈  | 𝜉

i
L,𝓁 ∈ Ξ

i
L, 0 ≤ 𝓁 ≤ L − 1, 1 ≤ i ≤ N}.

Note that in practice the samples are collected at the locations Ξi
L along the trajectory of agent i, and it is possible to

interpret the approximations process as a history-dependent method of building bases from trajectories. It is assumed
that the agents control their trajectories t → xi(t), so that the full collection of samples ΞL become increasingly dense inΩ
as L →∞. The distribution of the samples ΞL in the domain of interestΩ is measured by the fill distance hΞL,Ω defined as

hΞL,Ω ∶= sup
x∈Ω

min
𝜉𝓁∈ΞL

d (x, 𝜉),

and a corresponding definition holds for the fill distance hΞi
L,Ω

i of the local samples Ξi
L in the local domainΩi. Corollary 2

states conditions that ensure that the approximation error satisfies

||gL(t)||2 = ||ĝ(t) − ĝL(t)||2 ≤ CT max
1≤i≤N

hs
Ξi

L,Ω
i ,

for t ∈ [0,T]. In this equation the exponent s depends on the type of kernel used to define the space . The coefficient
CT depends on T, so the approximation error gL(t) converges uniformly in time over any bounded interval [0,T].

The remainder of this article is organized as follows. Section 2 reviews notation, symbols, and a few common conven-
tions and definitions, as well as some standard definitions of function spaces used in this article. A survey of reproducing
kernels and their native spaces is given in Section 2.2. Section 3 introduces the ideal centralized estimation method.
Section 3.1.1 gives sufficient conditions that guarantee the existence and uniqueness of solutions, Section 3.1.2 analyzes
its output convergence, and Section 3.1.3 introduces the weak PE conditions that suffice to prove that the ideal error con-
verges to zero as t → ∞. Finite dimensional approximations are introduced in Section 3.2, while Sections 4 and 5 discuss
some example computations and the conclusions.

2 BACKGROUND

2.1 Notation and symbols

We denote by R,R+
,N,N0 the real numbers, the non-negative real numbers, positive integers, and non-negative integers,

respectively. The relationship a ≲ b means that there is a constant c, which does not depend on a, b, such that a ≤ c ⋅ b.
The symbol≳ is defined similarly. When , are normed vector spaces, we write →  to mean that is continuously
embedded in  . That is,  is a subset of  and there is a constant C > 0 such that ||u|| ≤ C||u|| .

A number of standard spaces of real-valued functions are used in this article. The usual norm on the space of
real-valued functions that are k times continuously differentiable is denoted

||f ||k ∶=
∑

|𝛼|≤k

|
|
|
|

𝜕
𝛼f
𝜕x𝛼

|
|
|
|
,

where 𝛼 ∶= (𝛼1, … , 𝛼d) ∈ N
d
0 is a multiindex with length |𝛼| ∶=

∑
i=1,… ,d 𝛼i. The spaces of Lebesgue 𝜇-integrable

functions are likewise needed: in the usual way we define

||f ||Lp
𝜇

∶=

{(
∫

|f (x)|p𝜇(dx)

)1∕p 1 ≤ p <∞,
𝜇 − ess sup|f (x)| p = ∞,

where 𝜇 is a measure on  . When 𝜇 is the Lebesgue measure, we simply put 𝜇(dx) = dx and write ||f ||Lp .
In addition to real-valued functions, we will also consider spaces of functions of time that take values in a Hilbert

space. The space of continuous,-valued functions of time is equipped with the norm

||f ||(I,) ∶= sup
t∈I
||f (t)|| ,
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GUO et al. 1937

when I ⊆ R+ is an interval. The Lebesgue spaces of -valued functions over an interval I are defined in terms of the
norm

||f ||Lp(I,) ∶=
⎧
⎪
⎨
⎪
⎩

(
∫I ||f (𝜏)||

p


d𝜏
)1∕p 1 ≤ p <∞,

ess sup
𝜏∈I
||f (𝜏)|| p = ∞,

with I an interval I ⊆ R+. As discussed in detail in the next section, in this article  is always an RKHS space of
real-valued functions over the set  .

2.2 Reproducing kernel Hilbert spaces

A RKHS  over a set  is a Hilbert space that is defined in terms of reproducing kernel 𝔎 ∶  ×  → R that is sym-
metric, continuous, and positive definite. The kernel is positive definite when

∑
1≤i,j≤m𝔎(xi, xj)𝛼i𝛼j ≥ 0 for any finite

number of points {xi ∈ }m
i=1 and scalar coefficients {𝛼i}m

i=1, which holds when the Grammian matrix [𝔎(xi, xj)] ∈ Rm×m

is positive definite. Common reproducing kernels include the Sobolev–Matern kernels, squared exponential kernels, and
multi-quadratic kernels.34,35 For any x ∈  , we denote the function 𝔎(x, ⋅) ∈  by 𝔎x(⋅) ∶= 𝔎(x, ⋅) and refer to it as a
kernel basis function centered at x. The RKHS defined in terms of the kernel𝔎 is precisely the closed linear span

 = span{𝔎x|x ∈ },

where the closure is taken with respect to the pre-inner product ⟨𝔎x,𝔎y⟩

= 𝔎(x, y) that is defined for all x, y ∈  .

A necessary and sufficient condition for a Hilbert space to be a RKHS is that for any x ∈  the evaluation functional
Ex ∶  → R is a bounded operator.36 The evaluation functional Ex associated with the point x ∈  is defined as Exf =
f (x) for each f ∈  , and so boundedness requires that |Exf | = |f (x)| ≤ cx||f ||


for some constant cx > 0 that may depend

on x. In this article we only consider RKHSs that are continuously embedded in (), the space of continuous functions
on  , and we write  → () to denote the embedding. Such an embedding implies that there is a positive constant
C such that ||f ||() ≤ C||f ||


for all f ∈  . The existence of a constant k > 0 such that 𝔎(x, x) ≤ k

2
for all x ∈  is

sufficient to ensure the embedding → () holds. All kernels considered in this article satisfy this condition. In some
situations, notably in the application of Barbalat’s lemma in Section 3.1.2, we require the continuous embedding of 
in a space of smoother functions → 1() → ().

The reproducing property is the defining feature of a RKHS  , which states that for any f ∈  and any x ∈  , it
holds that

f (x) = Exf = ⟨𝔎x, f ⟩

.

Throughout this article we also employ the adjoint of the evaluation operator E∗x ∶ R →  which satisfies E∗x𝛼 = 𝛼𝔎x
for all 𝛼 ∈ R. In the following discussions, we will frequently use the two operators together in the form of

E∗x Exg = E∗x [g(x)] = g(x)𝔎x,

which emphasizes that E∗x Exg is a function in the RKHS. If we evaluate this function at a point y, we obtain (E∗x Exg)(y) =
g(x)𝔎x(y) = g(x)𝔎(x, y). When we consider a team of N agents located at X = {x1

, … , xN} ∈ Rd, we denote the evaluation
operator for the multiple locations by

EX g ∶= [Ex1 g, … ,ExN g]T = [g(x1
t ), … , g(xN

t )]
T
.

Using the definition of the adjoint, it can be verified that the adjoint E
∗
X that maps from RN to  satisfies E

∗
X𝛼 =∑N

i=1𝛼i𝔎(xi
t, ⋅), for each 𝛼 ∈ RN . Similarly, the operator E

∗
XEX that maps from to is derived as

E
∗
XEX g = E

∗
X
(
[g(x1), … , g(xN)]T

)
=

N∑

i=1
g(xi)𝔎xi .
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1938 GUO et al.

T A B L E 1 Notation summary

Symbol Description

 Input domain

𝔎 ∶  ×  → R Kernel function

 RKHS of functions, induced by𝔎

k ∈ R Upper bound on ||𝔎(x, ⋅)||


for all x ∈  .

g ∈  Function of interest

ĝ ∈  Ideal (infinite dimensional) approximation of g

g̃ = g − ĝ ∈  Ideal approximation error

Xt = {x1
t , … , xN

t } ⊂  Sampling locations of N agents at time instance t

EX ∶  → R
N Evaluation operator defined such that EX f = f (X) ∈ R

N for any X = {xi}N
i=1 and any f ∈ 

E
∗
X ∶ R

N →  Adjoint of EX

𝛾 ∈ R
+ Adaptation rate parameter

(t) ∶= 𝛾E∗X EX

Ỹ (t) = g̃(Xt) ∈ R
N Ideal sampling error at time instance t.

L ∈ R Dimension of finite-dimensional approximation

ΞL = {𝜉1, … , 𝜉L} ⊂  Set of input locations

L ⊂  Finite-dimensional subspace spanned by {𝔎(𝜉, ⋅)}𝜉∈ΞL

ĝL ∈ L Finite-dimensional approximation of ĝ

W ⊆  Set of functions that are not being weakly persistently excited; see Equation (9) for formal definition

ΠL  -orthogonal projection operator on toL

QL ∶= I − ΠL

hΞL ,Ω Fill distance of the samples ΞL with respect to the subspace Ω ⊆ 

𝛼L ∈ R
L Coefficients used to construct ĝL.

We will use the shorthand notation xt ∶= x(t) to denote the trajectory t → x of a single agent, and Xt ∶= {x1
t , … , xN

t }
T ∈


N to denote the trajectory of the team of N agents. Notation used throughout this article is summarized in Table 1.

3 CENTRALIZED ESTIMATION FROM AGENT NETWORKS

In this section, we study a centralized adaptive estimation approach. We begin by establishing the existence
and uniqueness of the estimator ĝ(t) and estimator error g̃(t), which evolve in time according to (4) and (5),
respectively. We then show that the ideal sampling error Ỹ (t) = EXt g̃(t) → 0 ∈ RN as t → ∞. We conclude the
section by proposing a finite-dimensional approximation ĝL(t) of ĝ(t), and show that ĝL(t) → ĝ(t) as the dimension
L → ∞.

3.1 The ideal (infinite dimensional) adaptive estimator

3.1.1 Existence and uniqueness of solutions

We begin with a study to ensure the governing Equation (5) is well-posed. That is, we want to establish that for any
ĝ0 ∈  there is a unique trajectory t → ĝ(t) ∈  that satisfies Equation (4), or equivalently find the error trajectory
t → g̃(t) ∈  that satisfies Equation (5). Such a proof is straightforward when we assume that the kernel 𝔎 is selected
so that the continuous embedding
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GUO et al. 1939

 → (), (6)

holds. We do not state the most general form of an existence proof for the trajectory of the ideal estimate, but choose to
study the existence of classical solutions in ([0,T], ). While some standard tools as in Daleckii and Krein37 could be
applied to consider the more general notion of Caratheodory solutions that take values in a Hilbert space, the presentation
here emphasizes how assumption (6) enables strategies that are entirely analogous to the case of time-varying evolution
in finite dimensional Euclidean spaces.

Theorem 1. Let the trajectory t → xi(t) be continuous in  = Rd for each i = 1, … ,N. Suppose the RKHS is uniformly
embedded in the space of continuous functions (). Then the DPS governed by Equation (5) has a unique solution g̃ ∈
([0,T], ) over any bounded interval [0,T] ⊂ [0,∞).

Proof. We employ a standard fixed point argument, one that is analogous to the finite dimensional case.38(p. 657) Define
the integral operator S in the usual way so that for any f ∈ 

(Sf )(t) ∶= f (0) +
∫

t

0
(𝜏)f (𝜏)d𝜏.

We argue that there is a classical solution to Equation (5) on any finite interval [t0,T] by making a fixed point argument
for S as an operator S ∶ ([t0, t0 + 𝛿], ) → ([t0, t0 + 𝛿], ) for some 𝛿 > 0 such that t0 + 𝛿 ≤ T. Note that the space
 ([t0, t0 + 𝛿], ) is a Banach space endowed with the supremum norm

||g||C([t0,t0+𝛿], ) ∶= sup
𝜏∈[t0,t]

||g(𝜏)||

.

Let u, v ∈  ([t0, t0 + 𝛿], ), then Su, Sv ∈  ([t0, t0 + 𝛿], ). We have for t ≤ t0 + 𝛿,

||Su(t) − Sv(t)||

=
‖
‖
‖
‖
‖
∫

t

t0

(𝜏)(u(𝜏) − v(𝜏))d𝜏
‖
‖
‖
‖
‖



≤ 𝛾Nk
2
𝛿||u − v||C([t0,t0+𝛿], ),

where the last inequality follows from the fact that the operator(t) is bounded uniformly in t. To show this, notice that
for any fixed f ∈ 

‖(t)f‖



= ‖‖
‖
𝛾E

∗
Xt

EXt f
‖
‖
‖



= 𝛾
‖
‖
‖
‖
‖
‖

N∑

i=1

⟨

f ,𝔎xi
t

⟩

𝔎xi
t

‖
‖
‖
‖
‖
‖



≤ 𝛾||f ||


N∑

i=1
||𝔎xi

t
||2



.

By assumption (6), a constant k exists such that ||𝔎x||

=
√
⟨𝔎x,𝔎x⟩ ≤ k uniformly for all x ∈  . Thus, ||(t)|| ≤ 𝛾Nk

2

holds for all x ∈  , which in turn implies ||(t)|| ≤ 𝛾Nk
2

for all t ≥ 0.
Now, choose 𝛿 < 𝛼∕(𝛾Nk

2
) for some 𝛼 < 1, then

||S(u − v)||C([t0,t0+𝛿], ) = sup
𝜏∈[t0,t0+𝛿]

||Su(𝜏) − Sv(𝜏)||


< 𝛼||u − v||C([t0,t0+𝛿], ),

which implies the operator S is a contraction on C([t0, t0 + 𝛿], ). By the Banach Fixed-point theorem, the operator S has
a unique fixed point in C([t0, t0 + 𝛿], ), which implies that the governing Equation (5) has a solution over [t0, t0 + 𝛿].
Notice that the choice of 𝛿 does not depend on the initial condition ĝ0, nor the initial time t0. We can extend the solution
to [t0,∞) by repeatedly solving Equation (5) in the interval of length 𝛿 with the initial condition set as the final value of
the previous interval.
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1940 GUO et al.

To establish the uniqueness of the solution to (5), we use the Grönwall inequality, as stated in Reference 39 (ch. 3).
Suppose that g̃ and h̃ both solve the governing Equation (5), then we have

̇̃g(t) = −(t)g̃(t), g̃(0) = g̃0,

̇̃h(t) = −(t)h̃(t), h̃(0) = h̃0.

If we subtract the two equations above and integrate over the interval [t0, t], we have

g̃(t) − h̃(t) = g̃0 − h̃0 −
∫

t

t0

(𝜏)(g̃(𝜏) − h̃(𝜏))d𝜏.

This implies

‖
‖
‖

g̃(t) − h̃(t)‖‖
‖



≤
‖
‖
‖

g̃0 − h̃0
‖
‖
‖



+ 𝛾Nk
2

∫

t

0

‖
‖
‖

g̃(𝜏) − h̃(𝜏)‖‖
‖



d𝜏,

where we have used the uniform boundedness ||(𝜏)|| ≤ 𝛾Nk
2
. Application of the Grönwall inequality yields

‖
‖
‖

g̃(t) − h̃(t)‖‖
‖



≤
‖
‖
‖

g̃0 − h̃0
‖
‖
‖



e∫
t

0 𝛾Nk
2
d𝜏
.

If the trajectories t → g̃(t) ∈  and t → h̃(t) ∈  start at the same initial condition g̃0 = h̃0, then it follows that
‖
‖
‖

g̃(t) − h̃(t)‖‖
‖



= 0. Thus, we conclude the solution g̃(t) = h̃(t) is unique. ▪

Having shown the estimator in Equation (5) is well-posed, we proceed to study the behavior of the ideal sampling
error Ỹ (t) ∶= EXt g̃(t) = Y (t) − EXt ĝ(t) ∈ RN as t → ∞.

3.1.2 Output error convergence

This article can be interpreted as a way of lifting conventional adaptive estimation in Euclidean spaces, as typified by
the popular References 12,40-42, to the infinite dimensional setting that uses an RKHS for representation of the function
estimate. It is well-known that the proof of convergence asymptotically in time in the finite dimensional Euclidean case
proceeds in two general steps. First, the state and output convergence of the estimation scheme is proven, and subse-
quently an analysis based on a suitably defined PE condition is used to prove parameter convergence. Sections 3.1.2 and
3.1.3 follow this general outline, albeit the RKHS is the state space of the governing DPS. In the next section, we discuss a
weak PE condition. Here, in this section, we apply (a generalization of) Barbalat’s lemma from Reference 43 to study the
convergence of the ideal output error t → Ỹ (t) to zero as t → ∞.

Theorem 2. Suppose that ||xi(t)|| ≤ c0 and ||ẋi(t)|| ≤ c1 for all i = 1, … ,N and t ∈ [0,∞) and that → C1(). Then the
output error Ỹ (t) ∶= EXt g̃(t) generated by the learning law in Equation (5) converges to zero,

lim
t→∞

Ỹ (t) = 0 ∈ R
N
.

Proof. Barbalat’s lemma is a standard tool used in the analysis of the asymptotic behavior of nonautonomous sys-
tems. While there are a few equivalent versions of the lemma, for control-related problems it is common to use
Barbalat’s lemma written in the following manner. Suppose Ỹ ∈ L∞([0,∞),RN) ∩ L2([0,∞),RN), and ̇̃Y ∈ L∞([0,∞),RN),
then

lim
t→∞

Ỹ (t) = 0 ∈ R
N
.

We begin the application of the lemma by showing that Ỹ ∈ L2([0,∞),RN). Define the shorthand notation g̃t ∶= g̃(t, ⋅) ∈
 and consider the quadratic function V(g̃t) =

1
2
⟨g̃t, g̃t⟩ . Its derivative with respect to time along the trajectory g̃t is
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GUO et al. 1941

V̇(g̃t) =
1
2
⟨ ̇̃gt, g̃t⟩ +

1
2
⟨g̃t, ̇̃gt⟩ ,

= 1
2
⟨−(t)g̃t, g̃t⟩ +

1
2
⟨g̃t,−(t)g̃t⟩ ,

= −
⟨

𝛾E
∗
Xt

EXt g̃t, g̃t

⟩




= −𝛾
N∑

i=1
[g̃t(xi

t)]
2
≤ 0.

Thus, V(g̃t) is non-increasing, bounded above by 1
2
||g̃0||

2, and bounded below by 0. This implies that the limit
limt→∞ V(g̃t) = V∞ exists. Since we have

lim
t→∞∫

t

0

d
dt

V(g̃(𝜏))d𝜏 = lim
t→∞∫

t

0
−

N∑

i=1
[g̃(xi(𝜏))]2d𝜏 = V∞ − V0

= −
∫

∞

0
||Ỹ (𝜏)||2d𝜏,

we conclude that Ỹ ∈ L2([0,∞),RN). Next, we show that Ỹ ∈ L∞([0,∞),RN). Note that for any f ∈  and x ∈  , Exf =
f (x) = ⟨𝔎x, f ⟩, by the reproducing property of the RKHS. The Cauchy–Schwarz inequality implies that Exf ≤ ||𝔎x||||f ||.
By assumption, ||𝔎x|| ≤ k for all x ∈  , and thus the evaluation operator Ex is uniformly bounded above by k. Since
yi(t) = g̃t(xi(t)), it follows that

|ỹi(t)| ≤ ||Exi
t
||||g̃t|| ≤ k||g̃0|| ,

where the last inequality follows from the fact that V(g̃t) =
1
2
||g̃t||

2 is non-increasing. Therefore, we conclude that ỹi ∈
L∞([0,∞),R), and hence Ỹ ∈ L∞([0,∞),RN). Lastly, we would like to conclude the ̇̃Y ∈ L∞([0,∞),RN) so that we can
apply Barbalat’s lemma. This follows if we assume some regularity, as described in the following lemma.

Lemma 1. Suppose that ||xi(t)|| ≤ c0 and ||ẋi(t)|| ≤ c1 for all i = 1, … ,N and that → 1(). Then ̇̃Y ∈ L∞([0,∞),RN).

Proof. By definition

d
dt
(ỹi(t)) =

d∑

j=1

𝜕g̃
𝜕xi

j

(xi(t))ẋi
j(t) +

𝜕g̃
𝜕t
(t, xi(t)).

When we assume that → 1(), we have

||f ||1() ∶= ||f ||() +
d∑

j=1

‖
‖
‖
‖
‖

𝜕f
𝜕xj

‖
‖
‖
‖
‖()

≲ ||f ||

,

for any f ∈  . This means that there exists a positive constant ĉ1 such that

|
|
|
|
|
|

d∑

j=1

𝜕g̃
𝜕xi

j

(xi(t))ẋi
j(t)
|
|
|
|
|
|

≤ c1

d∑

j=1
sup
||x||≤c0

|
|
|
|
|
|

𝜕g̃
𝜕xi

j

(x)
|
|
|
|
|
|

≤ ĉ1||g̃||

≤ ĉ1||g̃0|| ,

where the final inequality follows from V(g̃t) =
1
2
||g̃t||

2



being non-increasing. From the governing error equation (5), we
see that

|
|
|
|

𝜕g̃
𝜕t
(t, xi(t))

|
|
|
|
=
|
|
|
|
Exi

t

𝜕g̃
𝜕t
(t, ⋅)

|
|
|
|
≤ c||(t)g̃(t)||


≤ c𝛾Nk

2
||g̃0|| .

Combining both upper bounds, we see that ̇̃yi ∈ L∞([0,∞),R) and therefore conclude that ̇̃Y ∈ L∞([0,∞),RN). ▪

Having shown Ỹ ∈ L∞([0,∞),RN) ∩ L2([0,∞),RN), and ̇̃Y ∈ L∞([0,∞),RN), we invoke Barbalat’s lemma and con-
clude that the sampling error trajectory t → Ỹ (t) converges to 0 ∈ RN as t → ∞. ▪
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1942 GUO et al.

3.1.3 Persistence of excitation

In this section, we turn to the study sufficient conditions, commonly referred to as persistence of excitation (PE) condi-
tions, that ensure the convergence of the estimator error g̃(t) to 0 ∈  as t → ∞. PE conditions have a long history in
the study of adaptive estimation, particularly in the construction of observers for ODEs that evolve in Euclidean spaces.
Again, this topic is covered in detail in standard textbooks like.40-42,44 The study of the generalization of PE conditions
to DPS that are associated with PDEs, which are built using Gelfand triples, can be found in Reference 33 and the refer-
ences therein. More recently, References 31,32,45, written by a subset of the authors of this article, have introduced and
studied PE conditions under a variety of circumstances for the RKHS embedding method. In this article we extend the
analysis in References 31,32,45 by introducing weak PE conditions in the spirit of Reference 33, but here in the context
of RKHS embedding. The persistency conditions here are assumed to hold in a weak topology, as opposed to the strong
form introduced in References 31,32. To draw distinction with the earlier efforts in References 31,32, we begin by intro-
ducing simple modifications for multiple trajectories of the two definitions of persistency introduced in these references
that are defined for a single trajectory.

Definition 1 (S-PE1). The family of trajectories t → xi(t) for i = 1, … ,N persistently excites the space in the sense
of S-PE1 if there exist positive constants Δ, T, and 𝛾 such that

∫

t+Δ

t

⟨

E
∗
X
𝜏

EX
𝜏
g, g
⟩




d𝜏 ≥ 𝛾‖g‖2



, (7)

for all t ≥ T and any g ∈  .

Alternatively, the following strong form is also introduced there.

Definition 2 (S-PE2). The family of trajectories t → xi(t) for i = 1, … ,N persistently excites the space in the sense
of S-PE2 if there exist positive constantsΔ, 𝛿, T, 𝛾 such that for all t ≥ T and any g ∈ X , there is an s ∈ [t, t + Δ] such that

|
|
|
|
|
∫

s+𝛿

s
EX

𝜏
gd𝜏

|
|
|
|
|

≥ 𝛾 ‖g‖



. (8)

The above two definitions are closely related and are the infinite dimensional analogs of a few well-known forms of
PE in Euclidean spaces introduced in Reference 41. See also Reference 33 for a discussion of generalizations to certain
types of PDEs. The condition S-PE1 in Definition 1 always implies the condition S-PE2 in Definition 2. On the other
hand, the converse implication requires some additional hypothesis. We refer the readers to Reference 31,32 for a detailed
discussion of the proof of convergence when the above PE conditions are valid in a related estimation problem for system
identification that uses the RKHS embedding method.

In this article, we explore how the general strategy described in Reference 33 of using PE conditions that hold in a
weaker topology can be carried out for the RKHS embedding method in this article. Before we introduce the weak PE
condition in an RKHS, we require some preliminary definitions. We define the set W ⊆  as

W =

{

g ∈ 
|
|
|

lim
t→∞

|
|
|
|
|
∫

t+Δ

t

⟨

E
∗
X
𝜏

EX
𝜏
g, h
⟩




d𝜏
|
|
|
|
|

= 0, ∀ h ∈  and Δ > 0

}

. (9)

For now, we can think of functions in W as not being weakly persistently excited, an interpretation that we will discuss
in detail shortly.

Lemma 2. The set W is a closed subspace of  with respect to the norm of X . If the family of trajectories t → xi(t)
persistently excites the space in the sense of S-PE1, then W = {0}.

Before proceeding to the proof, note that this lemma concludes that W = {0} provided  is strongly persistently
excited. In view of our comments above, this can be interpreted as saying that the only functions that “fail to be
weakly persistently excited” is the zero function in this case. In general, the space W can consist of nonzero functions
too.

Proof. We first prove the claim that W is a linear subspace. Suppose f , g ∈ W . Then we for any 𝛼, 𝛽 ∈ R have
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GUO et al. 1943

|
|
|
|
|
∫

t+Δ

t

⟨

E
∗
X
𝜏

EX
𝜏
(𝛼f + 𝛽g, h)

⟩




d𝜏
|
|
|
|
|

≤ |𝛼|
|
|
|
|
|
∫

t+Δ

t

⟨

E
∗
X
𝜏

EX
𝜏
f , h
⟩




d𝜏
|
|
|
|
|

+ |𝛽|
|
|
|
|
|
∫

t+Δ

t

⟨

E
∗
X
𝜏

EX
𝜏
g, h
⟩




d𝜏
|
|
|
|
|

→ 0,

as t →∞ for each h ∈  and Δ > 0.
We next argue that the set W is norm closed for the case when the number of agents is N = 1. The general result for

N > 1 follows similarly. Suppose the sequence {gk}∞k=1 ∈ W converges in norm to g. Then we have

Gk(𝜏) ∶=
⟨

E∗xi
𝜏

Exi
𝜏

gk, h
⟩




→ G(𝜏) ∶=
⟨

E∗xi
𝜏

Exi
𝜏

g, h
⟩




, (10)

as k →∞ for each 𝜏 ∈ R+. Recall from the analysis of Theorem 2 that the evaluation operator Ex is uniformly bounded
above by k, and note that each function Gk(𝜏) is uniformly bounded independent of k since there is a constant cg > 0 such
that ‖gk‖



≤ cg and hence |Gk(𝜏)| ≤
‖
‖
‖

E∗xi
𝜏

‖
‖
‖

‖
‖
‖

Exi
𝜏

‖
‖
‖
‖gk‖



‖h‖

≤ k

2
cg ‖h‖


. By the Lebesgue dominated convergence

theorem it follows that

∫

t+Δ

t

⟨

E∗xi
𝜏

Exi
𝜏

g, h
⟩




d𝜏
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

F(t)

=
∫

t+Δ

t
lim
k→∞

⟨

gk,E∗xi
𝜏

Exi
𝜏

h
⟩




d𝜏

= lim
k→∞∫

t+Δ

t

⟨

gk,E∗xi
𝜏

Exi
𝜏

h
⟩




d𝜏
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Fk(t)

.

Since each gk ∈ W , it is trivial to see that for each k, limt→∞ Fk(t) = 0. On the other hand, now consider |Fk(t) − F(t)|. We
have

|Fk(t) − F(t)| ≤
|
|
|
|
|
∫

t+Δ

t

⟨

gk − g,E∗xi
𝜏

Exi
𝜏

h
⟩




d𝜏
|
|
|
|
|

≤ ‖gk − g‖

 ∫

t+Δ

t

‖
‖
‖

E∗xi
𝜏

‖
‖
‖

‖
‖
‖

Exi
𝜏

‖
‖
‖
‖h‖


d𝜏

≤ k
2
Δ ‖gk − g‖




‖h‖

.

This proves that Fk(t) converges uniformly in k to F(t). Using the Moore-Osgood theorem, we get

lim
t→∞

|
|
|
|
|
∫

t+Δ

t

⟨

E∗xi(𝜏)Exi(𝜏)g, h
⟩




d𝜏
|
|
|
|
|

= 0. (11)

Since h andΔwere arbitrarily chosen, the above result holds for all h ∈ X andΔ > 0. This proves that g ∈ W , and hence
W is norm closed.

The analysis above in Equations (10) and (11) has been carried out under the assumption that the number agents
N = 1. But modifications for N > 1 simply replaces the operator E∗xi

𝜏

Exi
𝜏

with E
∗
X
𝜏

EX
𝜏
. Since the norm ||EX

𝜏
|| is also uni-

formly bounded independent of time 𝜏, all of the steps remain true for teams of agents, and it follows that W is norm
closed for N ≥ 1.

Finally, we prove that the subspace W = {0} given the RKHS  is strongly persistently excited. If the family of
trajectories t → xi

𝜏
for i = 1, … ,N persistently excite the RKHS in the sense of S-PE1, then it is clear from the definition

of W that 0 ∈ W . To see that W contains only the zero function, arbitrarily choose any g0 ∈  with g0 ≠ 0. From the
definition, if is S-PE1, it follows that there exist positive constants Δ,T, and 𝛾 such that

∫

t+Δ

t

⟨

E
∗
X
𝜏

EX
𝜏
g0, g0

⟩




d𝜏 ≥ 𝛾||g0||
2
> 0,
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1944 GUO et al.

for all t ≥ T. Hence,

lim sup
t→∞

|
|
|
|
|
∫

t+Δ

t

⟨

E
∗
X
𝜏

EX
𝜏
g0, g0

⟩




d𝜏
|
|
|
|
|

≠ 0,

implies g0 ∉ W . As the choice of g0 ≠ 0 was arbitrary, we conclude W = {0}. ▪

Lemma 2 provides some intuition about how we interpret the subspace W as “functions that are not PE” in a certain
weak sense. The utility of this definition is that it can be used to give a description of the asymptotic behavior of the ideal
error: we next show in what sense the ideal error is attracted to a particular subset of W . Let Ŵ ∶= W ∩ Br(0), where
Br(0) ⊆  is the closed ball of radius r centered at 0. We choose r such that g̃(t) ∈ Br(0) ∀ t ≥ 0. Such a constant exists
because the Lyapunov function V(g̃t) =

1
2
⟨g̃t, g̃t⟩ is non-increasing (see the proof of Theorem 2). In the theorem below,

we show that the ideal error converges to Ŵ in a certain weak sense.
The proof that follows makes use of the “weak norm” | ⋅ |w on a separable Hilbert space. In general, this norm is

defined on the dual space of a separable normed vector space, see the discussion in problem 2.72 of Reference 46 or the
proof of theorem I.3.11 in Reference 47. The construction holds for the separable Hilbert space using the fact that the
Riesz mapping is an isometry from the dual of a Hilbert space to the space itself. Suppose that {hn}n∈N is a dense set in
the separable Hilbert space , with each ||hn|| = 1 for n ∈ N. We define the “weak norm”

|h|w ∶=
∞∑

n=1
2−n|⟨hn, h⟩|,

for each h ∈  . To see that this expression defines a bona fide norm on the set  , and it does not depend on the
particular choice of the dense set {hn}n∈N, again see Reference 47. Since |h|w ≤ ||h||

∑∞
n=12−n

≤ C||h||, we have the con-
tinuous embedding ( , || ⋅ ||) → ( , | ⋅ |w). It can be shown that the topology of (, | ⋅ |w) relativized to any norm
closed, bounded, convex set coincides with the weak topology of  relativized to that set. Finally, we define the weak
semidistance dw(g, Ŵ) from g ∈  to W as

dw(g, Ŵ) ∶= inf
h∈Ŵ

|g − h|w.

In view of the properties of Ŵ , the relative topology (Ŵ , | ⋅ |w) induced by the weak norm | ⋅ |w on Ŵ is equivalent to the
set Ŵ equipped with the topology it inherits from the usual weak topology on , that is, (Ŵ ,weak( )).

The asymptotic behavior of global solutions of the ideal error equations are described in the following theorem, which
is the primary result of this section.

Theorem 3. Let g̃ ∈ ([0,∞), ) be a solution of Equation 5 on [0,∞). Then we have

lim
t→∞

dw(g̃(t), Ŵ) = 0. (12)

Proof. As in the last proof, we carry out this proof for the case when N = 1 since the case for N > 1 follows analogously.
We prove this theorem by contradiction. Suppose the implication is not true. Then there exists a sequence tk → ∞ and a
constant 𝜂 > 0 such that

dw(g̃(tk), Ŵ) ≥ 𝜂 > 0. (13)

Since Br(0) is weakly sequentially compact, there exists a subsequence {tl} ≡ {tkl} ⊆ {tk} and g̃∞ ∈ Br(0) such that
g̃(tl) → g̃∞ weakly in  . But since Br(0) is norm closed and convex, it is weakly closed and g̃∞ ∈ Br(0). Also, {g̃(tl)}l∈N,
is contained in the norm closed, convex, bounded set Br(0), and the weak topology coincides with the (, | ⋅ |w) topology
over this set. Thus we have |g̃(tl) − g̃∞|w → 0. This result together with Equation (13) imply that g̃∞ ∉ W . Consequently,
we know that there exists an h0 ∈ X and a positive Δ0 > 0 such that

lim
l→∞

|
|
|
|
|
∫

tl+Δ0

tl

⟨

E∗xi
𝜏

Exi
𝜏

g̃∞, h0

⟩




d𝜏
|
|
|
|
|

≠ 0.
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GUO et al. 1945

Since

|
|
|
|
|
∫

tl+Δ0

tl

⟨

E∗xi
𝜏

Exi
𝜏

g̃∞, h0

⟩




d𝜏
|
|
|
|
|

≤ k
2
Δ0 ‖‖g̃∞‖‖



‖h0‖

,

we know that

lim sup
l→∞

|
|
|
|
|
∫

tl+Δ0

tl

⟨

E∗xi
𝜏

Exi
𝜏

g̃∞, h0

⟩




d𝜏
|
|
|
|
|

= c0 < ∞. (14)

This implies that there exists a subsequence {tm} ≡ {tlm} ⊆ {tl} and an integer M such that

|
|
|
|
|
∫

tm+Δ0

tm

⟨

E∗xi
𝜏

Exi
𝜏

g̃∞, h0

⟩




d𝜏
|
|
|
|
|

>
c0

2
, ∀ m ≥ M. (15)

Consider the inequality

|
|
|
|
|
∫

tm+Δ0

tm

⟨

E∗xi
𝜏

Exi
𝜏

g̃∞, h0

⟩




d𝜏
|
|
|
|
|

≤

|
|
|
|
|
∫

tm+Δ0

tm

⟨

E∗xi
𝜏

Exi
𝜏

(g̃∞ − g̃(tm)), h0

⟩




d𝜏
|
|
|
|
|

+
|
|
|
|
|
∫

tm+Δ0

tm

⟨

E∗xi
𝜏

Exi
𝜏

g̃(tm), h0

⟩




d𝜏
|
|
|
|
|

.

Taking the limsup on both sides, we get

c0

2
<

|
|
|
|
|
∫

tm+Δ0

tm

⟨

E∗xi
𝜏

Exi
𝜏

g̃(tm), h0

⟩




d𝜏
|
|
|
|
|

. (16)

We also know that since ỹ ∈ L2([0,∞),R), we have as m → ∞,

|
|
|
|
|
∫

tm+Δ0

tm

⟨

E∗xi
𝜏

Exi
𝜏

g, h0

⟩




d𝜏
|
|
|
|
|

=
|
|
|
|
|
∫

tm+Δ0

tm

(
ỹ(𝜏),Exi

𝜏

h0
)

d𝜏
|
|
|
|
|

≤
∫

tm+Δ0

tm

k|ỹ(𝜏)| ‖h0‖


d𝜏

≤ k
√
Δ0||ỹ||L2([tm,tm+Δ0),R)||h0||→ 0.

Similarly, we conclude that

|
|
|
|
|
∫

tm+Δ0

tm

⟨

E∗xi
𝜏

Exi
𝜏

g̃(𝜏), h0

⟩




d𝜏
|
|
|
|
|

−
|
|
|
|
|
∫

tm+Δ0

tm

⟨

E∗xi
𝜏

Exi
𝜏

g̃(tm), h0

⟩




d𝜏
|
|
|
|
|

≤

|
|
|
|
|
∫

tm+Δ0

tm

⟨

E∗xi
𝜏

Exi
𝜏

(g̃(𝜏) − g̃(tm)), h0

⟩




d𝜏
|
|
|
|
|

=
∫

tm+Δ0

tm

(|ỹ(𝜏)| + |ỹ(tm)|) |Exi
𝜏

h0|d𝜏

≤ k ‖h0‖


(√
Δ||ỹ||L2([tm,tm+Δ0),R) + Δ|ỹ(tm)|

)

→ 0 as m → ∞.

Consequently, we have

lim
m→∞

|
|
|
|
|
∫

tm+Δ0

tm

⟨

E∗xi
𝜏

Exi
𝜏

g̃(𝜏), h0

⟩




d𝜏
|
|
|
|
|

= lim
m→∞

|
|
|
|
|
∫

tm+Δ0

tm

⟨

E∗xi
𝜏

Exi
𝜏

g̃(tm), h0

⟩




d𝜏
|
|
|
|
|

.

 10991115, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/acs.3442 by L

ehigh U
niversity L

inderm
an L

ib, W
iley O

nline L
ibrary on [12/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1946 GUO et al.

Based on the above results, we conclude that

lim
m→∞

|
|
|
|
|
∫

tm+Δ0

tm

⟨

E∗xi
𝜏

Exi
𝜏

g̃(tm), h0

⟩




d𝜏
|
|
|
|
|

≤ lim
m→∞

|
|
|
|
|
∫

tm+Δ0

tm

⟨

E∗xi
𝜏

Exi
𝜏

(g̃(tm) − g̃(𝜏)), h0

⟩




d𝜏
|
|
|
|
|

+ lim
m→∞

|
|
|
|
|
∫

tm+Δ0

tm

⟨

E∗xi
𝜏

Exi
𝜏

g̃(𝜏), h0

⟩




d𝜏
|
|
|
|
|

→ 0 as m →∞.

The above statement contradicts the one in (15). Thus, we conclude

lim
t→∞

dw(g̃(t), Ŵ) = 0.

as desired. ▪

The analysis above makes clear that, in analogy to the weak PE conditions in Reference 33 and the references therein,
the solutions of the ideal error equations in RKHS embedding converges weakly to Ŵ as t → ∞. We say that the space
 is weakly persistently excited whenever Ŵ ≡ {0}. The following lemma makes clear that while the notion of weak
persistence might at first seem rather abstract, it has some practical implications that are quite intuitive.

Corollary 1. If the family of trajectories t → xi(t), with i = 1, … ,N, weakly persistently excites the space , the pointwise
error converges,

lim
t→∞

g̃(t, x) = 0 ∈ R,

for all x ∈  .

Proof. By assumption, we have Ŵ = {0}, which implies that

lim
t→∞

|g̃(t)|w = 0.

We know that the ideal error g̃(t, ⋅) ∈  lies in Br(0) for a suitably chosen r > 0 defined from the Lyapunov analysis in
the proof of Theorem 2. But the topology that Br(0) inherits as subset of ( , | ⋅ |w) is equivalent to the weak topology
on Br(0). This means that we have the weak convergence of g̃(t) to 0 ∈  as t → ∞. Since 𝔎x ∈  for all x ∈  , by
definition of weak convergence, we have 0 = limt→∞ ⟨g̃(t), kx⟩



= g̃(t, x). ▪

3.2 Finite dimensional approximations

Here we consider a few different ways to approximate the solutions ĝ(t) of the ideal, infinite dimensional governing system
in Equations (4) and (5). It is important to observe that an approximation of the ideal estimation process represented in
Equation (4) requires two distinct contributions: a discretization of the continuous evolution law in time as well as the
definition of a suitable finite dimensional approximant at each discrete time. To understand how the final centralized
consensus estimate will be executed, we start by introducing an explicit linear-multistep integration scheme in the Hilbert
space . The explicit linear multi-step discrete integrator of order q for the estimator (4) takes the form

ĝk+1 = ĝk + h𝛾
q∑

s=1
asE

∗
Xk−s
(Yk−s − EXk−s ĝk−s)

= ĝk + h𝛾
q∑

s=1
as

N∑

i=1
𝔎(xi

k−s, ⋅)(y
i
k−s − ĝk−s(xi

k−s)) ∈  , (17)
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GUO et al. 1947

F I G U R E 1 At each time index k ∶= tk, all agents communicate their samples to a central processor that, in principle, updates the
centralized estimator ĝk ∈  .

where h denotes the timestep, and the collection of coefficients a = {as}q
s=1 is determined by the particular multi-

step method used. For example, if the Adams-Bashforth method with q = 3 is used then the set of coefficients is a =
1

12
{23,−16, 5}. For more information on linear multistep methods, we refer the reader to Butcher.48(ch. 2.24) Note that the

timestep h can vary and need not be held constant across all time indices.
By definition the recursion takes place in the (generally infinite dimensional) space . The recursion scheme relies

on past state-observation pairs, as well as, the past estimators. In principle, an implementation of the centralized esti-
mator (17) can be carried out as follows. At each time step k = 1, 2, ..., every agent i of the team collects a sample and
communicates the state-sample pair (xi

k, y
i
k) to a central processor, which uses the collection of state-sample pairs from

all the agents to update the estimator ĝk as depicted in Figure 1.
Although the recursion in Equation (17) is closer to a realizable algorithm, it still remains ideal at best. The

recursion defines the function ĝk+1 at the time step tk+1 in terms of the previous estimators ĝk, … , ĝk−q ⊂  , the
previous samples yi

k, … , yi
k−q, the previous states xi

k, … , xi
k−q ⊂  , and the kernel functions 𝔎(xi

k, ⋅), … ,𝔎(xi
k−q, ⋅) ⊂

 . Practical considerations, such as storage and numerical stability, require that we further project the functions of
these equations onto some finite dimensional space VL ∶= span{vL,𝓁 ∈  | 1 ≤ 𝓁 ≤ L}, where L denotes the num-
ber of basis elements for the subspace VL ⊂  . Generally, this is accomplished in terms of a family {PL}L∈N of
uniformly bounded projection operators PL ∶  → VL, which enable the discrete ideal law in Equation (17) to be
written as

PLĝk+1 = PL

(

ĝk + h𝛾
q∑

s=1
asE

∗
Xk−s
(Yk−s − EXk−s ĝk−s) ∈ 

)

= PL

(

ĝk + h𝛾
q∑

s=1
as

N∑

i=1
𝔎(xi

k−s, ⋅)(y
i
k−s − ĝk−s(xi

k−s)) ∈ 

)

. (18)

In the next section we describe some concrete ways that the finite dimensional space VL will be chosen that depend on
bases constructed from agent samples. The specific choice of spaces VL and bases {vL,𝓁}1≤𝓁≤L generate the final Equation
(27) below that are suitable for implementation. In the next section, we detail how these bases and their spaces of
approximants are constructed.

3.2.1 Samples and history dependent bases

In this article we denote by Ξi
L the set of L samples collected, from the discrete initial time 𝓁 = 0 up through the discrete

time step 𝓁 = L − 1, in the subdomain Ωi by agent i for i = 1, … ,N at times TL ∶= {tL,𝓁 ∈ R+ | 0 ≤ 𝓁 ≤ L − 1},

Ξi
L ∶=

{
𝜉L,𝓁 ∶= xi(tL,𝓁), tL,𝓁 ∈ TL

}
⊂ Ωi

⊂ X .

The entirety of samples collected by agent i is then given by Ξi ∶=
⋃

L≥0 Ξ
i
L, and it is further assumed that this collection

is dense in the subset Ωi, that is, Ωi
⊂ Ξi

. Correspondingly, we define the collection of all samples collected through
discrete time tL−1 by all the agents as ΞL ∶ =

⋃N
i=1Ξ

i
L. We define Ω to be the set that is sampled by all the agents, which is

given by
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1948 GUO et al.

Ω=
N⋃

i=1
Ωi
⊆ X .

The full collection of samples that are collected over [0,∞) by all the agents is then Ξ ∶=
⋃

0≤L<∞ ΠL. Clearly, it follows
that Ω ⊂ Ξ. Associated with the sample sets Ξi

L and ΞL, we define the associated finite dimensional spaces Hi
L and HL,

respectively, that will be used to build approximants:


i
L ∶= span

{

𝔎(𝜉L,𝓁 , ⋅) | 𝜉i
L,𝓁 ∈ Ξ

i
L, 0 ≤ 𝓁 ≤ L − 1}

}

L ∶= span
{

𝔎(𝜉i
L,𝓁 , ⋅) | 𝜉

i
L,𝓁 ∈ Ξ

i
L, 0 ≤ 𝓁 ≤ L − 1, 1 ≤ i ≤ N

}

.

We define ΠL and Πi
L to be the -orthogonal projections ontoL and i

L, respectively. The rates of convergence of the
estimates will be studied by examining how the finite dimensional subspaces L and  i

L approximate, respectively, the
closed subspaces

Ω ∶= span{𝔎(𝜉, ⋅) | 𝜉 ∈ Ω} ⊂  ,

Ωi ∶= span{𝔎(𝜉, ⋅) | 𝜉 ∈ Ωi} ⊂  .

In the next section we describe how these bases are used in the construction of the finite dimensional approximation
ĝL(t) ∈ L of the ideal estimate ĝ(t) ∈  .

3.2.2 Convergence of the FD, centralized estimator

We define the estimate ĝL(t) ∈ L as the solution of the evolution law

̇̂gL(t) = ΠL[(t)g̃L(t)] = 𝛾ΠLE
∗
Xt
(Y (t) − EXt ĝL(t)), (19)

where g̃L(t) = g − ĝL(t) ∈  . In the following theorem, we derive an expression that bounds the approximation error
gL(t) = ĝ(t) − ĝL(t). It will be used subsequently to prove that gL(t) → 0 as L → ∞ for each time t.

Theorem 4. Let ĝ be the solution of the infinite dimensional estimator Equation (4) and define the approximation error
gL(t) ∶= ĝ(t) − ĝL(t). The approximation error is bounded by the expression

||gL(t)||2


≤

(

||QLĝ0||
2



+ 𝛾

(

max
1≤i≤N

sup
x∈Ωi

||QL𝔎(x, ⋅)||2


)

||Ỹ ||2L2((0,t),RN )

)

ect (20)

with c ∶= 1 + 2𝛾Nk
2

and QL ∶= I − ΠL.

Proof. Observe that the approximation error gL(t) ∶= ĝ(t) − ĝL(t) = g̃L(t) − g̃(t) propagates in time according to

̇gL(t) = (t)g̃(t) − ΠL[(t)g̃L(t)]
= (t)g̃(t) − ΠL[(t)g̃(t)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(I−ΠL)(t)g̃(t)

+ ΠL[(t)g̃(t)] − ΠL[(t)g̃L(t)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

−ΠL(t)g(t)

. (21)

Denote QL ∶= I − ΠL. Then note that

1
2

d
dt
⟨gL(t), gL(t)⟩ =

⟨
(I − ΠL)(t)g̃(t), g(t)

⟩




−
⟨
ΠL(t)g(t), g(t)

⟩




≤ ‖QL(t)g̃(t)‖


‖
‖g(t)‖‖



+ ‖ΠL(t)‖ ‖‖gL(t)‖‖
2



≤
1
2
‖QL(t)g̃(t)‖2




+ 1
2
‖
‖g(t)‖‖

2



+ nk
2
‖
‖gL(t)‖‖

2



.
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GUO et al. 1949

Let c ∶= 1 + 2Nk
2
. Next, we integrate both sides from 0 to t to find that

‖
‖gL(t)‖‖

2



≤ ‖‖gL(0)‖‖
2



+
∫

t

0
‖QL(𝜏)g̃(𝜏)‖2




d𝜏 + c
∫

t

0

‖
‖gL(𝜏)‖‖

2



d𝜏.

By the assumption ĝL(0) = ΠLĝ(0), we have gL(0) = QLĝ(0). Then we apply Grönwall’s inequality to obtain

‖
‖gL(t)‖‖

2



≤

(

‖QLĝ(0)‖2



+
∫

t

0
‖QL(𝜏)g̃(𝜏)‖2




d𝜏
)

ect
.

Next we focus on the rightmost term in the above inequality. We bound this term by writing

∫

t

0
‖QL(𝜏)g̃(𝜏)‖2




d𝜏 = 𝛾
∫

t

0

‖
‖
‖

QLE
∗
Xt

Ỹ (𝜏)‖‖
‖

2




d𝜏

≤ 𝛾
∫

t

0

N∑

i=1

‖
‖
‖

QL𝔎(xi
𝜏 , ⋅)ỹi(𝜏)‖‖

‖

2




d𝜏

≤ 𝛾max
1≤i≤N

sup
x∈Ωi

||QL𝔎(x, ⋅)||2
∫

t

0

N∑

i=1
|ỹi(𝜏)|2d𝜏.

This completes the proof of the theorem. ▪

Our first result concerning the rate of convergence of approximations makes use of some standard theory concerning
the interpolants in native spaces as summarized in chapter 11 of Wendland.35 We now assume that the kernel𝔎(x, y) ∶=
r(||x − y||2) for all x, y ∈ Ω ⊆ X with r ∶ R+ → R+ a radial basis function. We define the power function P𝔎,Z ∶ Ω→ R+

for the kernel𝔎 (see definition 11.2 in Reference 35) and a finite set Z ⊂ Ω having J = #(Z) points as

P𝔎,Z(x) ∶= min
𝛼∈RJ

‖
‖
‖
‖
‖
‖

𝔎(x, ⋅) −
J∑

j=1
𝛼j𝔎(zj, ⋅)

‖
‖
‖
‖
‖
‖



.

But we know by definition that

‖QL𝔎(x, ⋅)‖

= ‖(I − ΠL)𝔎(x, ⋅)‖


= min

𝛼∈RL

‖
‖
‖
‖
‖
‖

𝔎(x, ⋅) −
L∑

𝓁=1
𝛼𝓁𝔎(𝜉L,𝓁 , ⋅)

‖
‖
‖
‖
‖
‖



,

and therefore we have

sup
x∈Ωi

‖QL𝔎(x, ⋅)‖

= sup

x∈Ωi

‖
‖P𝔎,ΞL

‖
‖



. (22)

In other words, the rightmost term in Equation (20) can be expressed in terms of the power function P𝔎,ΩL of the kernel
𝔎 and the samples by all the agents. The utility of making this identification is that specialists have carefully studied how
to bound the power function for a wide variety of choices of kernel𝔎 in terms of the fill distance. Recall that, for a finite
set Z ⊂ A of J = #(Z) points, the fill distance of Z in A ⊆ X is

hZ,A ∶= sup
x∈A

min
z∈Z

d (x, z).

We will need the global and local fill distances, defined respectively as

hΞL,Ω ∶= sup
x∈Ω

min
𝜉∈ΞL

d (x, 𝜉),

hΞi
L,Ω

i ∶= sup
x∈Ωi

min
𝜉∈Ξi

L

d (x, 𝜉).
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1950 GUO et al.

Table 11.1 in Reference 35 summarizes how the power function P𝔎,Z for a finite subset Z ⊂ A ⊆ X and a particular kernel
𝔎 is bounded in terms of a function F as in the expression

P2
𝔎,Z(x) ≲ F(hZ,A). (23)

The appropriate function F is given in the table for Gaussian, multiquadric, inverse multiquadric, thin plate splines,
and Wendland compactly supported kernel functions. For example, when using thin plate splines with r(𝜉) ∶=
(−1)s+1

𝜉
2s log(𝜉) and s ∈ N, we have

P2
𝔎,Ξi

L
(x) ≲ h2s

Ξi
L,Ω

i .

For the compactly supported Wendland kernels rd,s(𝜉), it is known that

P2
𝔎,Ξi

L
(x) ≲ h2s+1

Ξi
L,Ω

i .

Other expressions for F for the remaining types of kernels listed above can be found in Table 11.1 in Reference 35.
One of the important properties of the power function is that it enables pointwise bounds on projection error. By

Theorem 11.4 of Reference 35, if Ω is open and the kernel𝔎 ∈ C(Ω × Ω), we have

|((I − ΠL)f )(x)| ≤ P𝔎,ΞL(x)||f || ,

for all x ∈ Ω and f ∈  . In fact, it is possible to similarly establish uniform bounds on the derivatives of the function f
in terms of power functions.35

As a last preparation for the derivation of a rate of convergence in Corollary 2 below, we recall a standard mechanism
for improving error estimates for smooth functions. Since we assume that the kernel𝔎 ∶ Ω × Ω→ R is positive definite,
we can introduce an integral operator T ∶ L2(Ω,R) →  defined as

(Tf )(x) =
∫Ω
𝔎(x, y)f (y)dy.

Intuitively, we can think of the integral operator as smoothing functions in L2(Ω,R) to obtain functions contained in .
This operator enables a bound on ‖(I − ΠL)f‖



for any f ∈ T(L2(Ω,R)) ⊆  . Suppose f = T(h) for some h ∈ L2(Ω,R).
By proposition 10.28 in Reference 35, we have that

‖(I − ΠL)f‖2



= ⟨(I − ΠL)f , f ⟩


= ⟨(I − ΠL)f ,Th⟩



= ((I − ΠL)f , h)L2(Ω,R) ≤ ||(I − ΠL)f ||L2(Ω,R)||T−1f ||L2(Ω,R)

≤ ||PΞL,Ω||L2(Ω,R) ‖(I − ΠL)f‖


||T−1f ||L2(Ω,R).

It follows, then, that ‖(I − ΠL)f‖


≤ ||PΞL,Ω||L2(Ω,R)||T−1f ||L2(Ω) whenever f ∈ T(L2(Ω,R)).
We use these observations to derive a rate of convergence for the bound summarized in Theorem 4.

Corollary 2. Suppose that the power functions P𝔎,Ξi
L

for i = 1, … ,N and P𝔎,ΞL are bounded as in Equation (23) with
F(r) ∶= rp and p ∈ N, that the domains Ωi for i = 1, … ,N and Ω are open, the kernel 𝔎 ∈ C(Ω × Ω) is positive definite,
and the initial condition ĝ0 ∈ T(L2(Ω,R)). Then there is a constant C > 0 such that

‖
‖gL(t)‖‖

2



≤ C
(

1 + 𝛾||Ỹ ||2L2((0,t),RN )

)

max
1≤i≤N

h2p
Ξi

L,Ω
i ,

for t ∈ [0,T].

Proof. First, we note that by the observations above, we have

‖(I − ΠL)ĝ0‖


≤

(

∫Ω
P2
𝔎,ΞL

(𝜉)d𝜉
)1∕2

||T−1ĝ0||L2(Ω,R)

≲ hp
ΞL,Ω

|Ω|1∕2||T−1ĝ0||L2(Ω,R) (24)
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GUO et al. 1951

with |Ω| the measure of Ω. However, from the definition of the fill distance we have

hΞL,Ω = sup
x∈Ω

min
𝜉∈ΞL

d (x, 𝜉),

= max
1≤i≤N

sup
x∈Ωi

min
𝜉∈ΞL

d (x, 𝜉),

≤ max
1≤i≤N

sup
x∈Ωi

min
𝜉∈Ξi

L

d (x, 𝜉) = max
1≤i≤N

hΞi
L,Ω
. (25)

The conclusion of the corollary now follows from Equation (20) in Theorem 4 when we substitute the above bounds for
||(I − ΠL)ĝ0||


in Equation (24), the bound for P𝔎,Ξi

L
in Equations (22) and (25). ▪

3.2.3 Implementation of the centralized estimation algorithm

In this section we discuss the implementation details of the finite dimensional approximation embodied in the
evolution law

̇̂gL(t) = ΠL
(
(t)g̃L(t)

)
= 𝛾ΠLE

∗
Xt

(
Y (t) − EXt ĝL(t)

)

= 𝛾ΠL

N∑

i=1
𝔎(xi

t, ⋅)
(

yi(t) − Exi
t
ĝL(t)

)

. (26)

Since by definition we have the expansion

ĝL(t) ∶=
L∑

𝓁=1
𝛼L,𝓁(t)𝔎(𝜉L,𝓁 , ⋅),

taking the inner product of the above equations with an arbitrary function𝔎(𝜉L,j, ⋅) ∈ L yields the system of ODEs that
govern the coefficients {𝛼L,𝓁(t)}L

𝓁=1. For each j = 1, … ,L we obtain

L∑

𝓁=1

⟨
𝔎(𝜉L,j, ⋅),𝔎(𝜉L,𝓁 , ⋅)

⟩




̇̂𝛼L,𝓁

= 𝛾
N∑

i=1

⟨
𝔎(𝜉L,j, ⋅),𝔎(xi

t, ⋅)
⟩




(

yi(t) −
L∑

𝓁=1

⟨
𝔎(𝜉L,j, ⋅),𝔎(xi

t, ⋅)
⟩




𝛼L,𝓁(t)

)

L∑

𝓁=1
𝔎
(
𝜉L,j, 𝜉L,𝓁

)
̇̂𝛼L,𝓁 = 𝛾

N∑

i=1
𝔎
(
𝜉L,j, xi

t
)
(

yi(t) −
L∑

𝓁=1
𝔎
(
𝜉L,j, xi

t
)
𝛼L,𝓁(t)

)

.

We introduce the Grammian matrices

K(ΞL,ΞL) = [𝔎(𝜉L,j, 𝜉L,𝓁)] ∈ R
L×L
,

K(ΞL,Xt) = [𝔎(𝜉L,j, xi
t)] ∈ R

L×N
,

and the ODEs are written in the succinct form

̇̂𝛼L = 𝛾K−1(ΞL,ΞL)K(ΞL,Xt)
(

Y (t) −K
T(ΞL,Xt)𝛼̂L(t)

)
,

with 𝛼̂L ∶= (𝛼̂L,1, … , 𝛼̂L,L)T . These equations can be integrated forward in time using any standard discrete integration
method. For a linear multistep method of the type described in Equations (17) or (18), the final discrete evolution law is
given by
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1952 GUO et al.

𝛼̂L,k+1 = 𝛼̂L,k + h𝛾
q∑

s=1
asK(ΞL,ΞL)−1

K(ΞL,Xk−s)
(

Yk−s −K
T(ΞL,Xk−s)𝛼̂L,k−s

)
. (27)

Inspection of the above final, discrete evolution law makes clear that it depends on a fixed basis ofL that depends on
the samples defined in ΞL. Also, the rate of convergence at which ĝL(t) → ĝ(t) as L → ∞ in Corollary 2 is also stated when
the basis forL is held fixed for a given time interval. In practice, it is anticipated that the discrete estimation law above
will be implemented over blocks of time during which the basis is held fixed, but the basis will be updated or enriched
over time according to some strategy. This process of enrichment, detailed in the next paragraph, has been carried out in
the examples in Section 4.

See Algorithm 1 for the implementation details of how the finite dimensional approximation is realized in prac-
tice. Before collecting any samples, a kernel 𝔎, together with any of its associated hyperparameters 𝜃g, must be
specified. The agents then use their initial samples to form the estimator basis and coefficients. At each subsequent
time index k ∈ N, the team of agents sample the spatial field to obtain (Xk,Yk). With this new set of samples in
hand, we update the prediction coefficients using the discrete-time evolution law (27). Then, we iterate through the
sampling location xi

k ∈ Xk for each i = 1 ∶ N and compute the novelty of xi
k relative to ΞL to determine whether

or not to add xi
k to the basis set. As done in References 1,49,50, novelty of xi

n, relative to ΞL, can be made pre-
cise in terms of the squared norm of the residual which arises from the orthogonal projection of 𝔎xi

k
onto L

given by

𝜖
i
k = 𝔎(x

i
k, x

i
k) −K(xi

k,ΞL)K(ΞL,ΞL)−1
K(ΞL, xi

k). (28)

Thus, if 𝜖i
k is greater than some user-defined threshold 𝜖 ≥ 0, then we add xi

k to ΞL. Given that the dimension of the
subspace L has increased by one, the prediction coefficients must also increase in dimension. Letting g ∶= g(ΞL)
denote all the samples at the basis centers, we initialize the prediction coefficients such that 𝛼k+1 = K(ΞL,ΞL)−1g
whenever a new basis element is added. That is, we initialize the coefficients so as to interpolate g at the locations
contained in Ξ.

For a given sampling iteration k, the computational complexity incurred to update the coefficients {𝛼}L
𝓁=1 is (NL2)

provided the inverse K(ΞL,ΞL)−1 is cached in memory. If a new basis element is added, K(ΞL,ΞL)−1 must be updated.
Using a rank-1 update, based on the Sherman–Morrison matrix inverse identity, this incurs a computational cost (L2);
see Reference 51 for more details.

Algorithm 1. Centralized consensus estimation implementation

input: Estimator kernel𝔎, estimator kernel hyperparameters 𝜃ĝ, and novelty threshold 𝜖>0
Agents collect initial samples: X0,Y0
Initialize basis and collection of associated samples: ΞL = X0; g = Y0
Initialize prediction coefficients: 𝛼1 = K(ΞL,ΞL)−1g
while Collecting samples do

Sample spatial field: (Xk,Yk)
Update prediction coefficients via Equation (27): 𝛼k → 𝛼k+1
for i = 1 ∶ N do

Compute novelty of xi
k relative to ΞL via Equation (28): 𝜖

if 𝜖 > 𝜖 then
Add basis element: {ΞL ∪ {xi

k}} → ΞL; {g ∪ {yi
k}} → g

Initialize coefficients: 𝛼k+1 = K(Ξ,Ξ)−1g
end if

end for
k + 1 → k

end while
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GUO et al. 1953

4 NUMERICAL RESULTS

To illustrate the qualitative behavior of the finite-dimensional estimate ĝL, we choose the unknown function g ∶  → R

that is an element of the RKHS induced by the 5/2 Matern kernel

𝔎(xi, xj) = 𝜎2
(

1 +
√

5r + 5r2

3

)

exp(−
√

5r), r =
||xi − xj||Rd

𝓁
,

with the hyperparameters 𝜃g = [𝜎,𝓁] = [1, 1]. The unknown function g is chosen to be a realization of a Gaussian process.
We generate g ∈  by discretizing the domain  ≡ [0, 10] × [0, 10] into a grid Ξg ⊂  with a resolution of 0.25 units,
and we write g ∶  → R as

g(⋅) =
∑

xi∈Ξg

ai𝔎(xi, ⋅),

where ai is the ith element of a = K(Ξg,Ξg)−1g, and g is a vector that contains a particular realization over Ξg of a
zero-mean Gaussian distribution whose covariance matrix is K(Ξg,Ξg). See Figure 2 for a visualization of g. We fix the
realization g and use it for all subsequent numerical convergence studies.

The first set of simulations are designed so as to demonstrate that as we increase the number of basis centers ΞL =
{𝜉i}L

i=1 ⊂  used for the finite dimensional estimator ĝL, and the density of the sample points increases, the error measure
||g − ĝL(tf )||() between the true function and the estimator ĝL(tf ) at the final time tf tends to 0. Since we have assumed that
 → (), these simulations should satisfy ||g − ĝ(tf )||() ≲ ||g − ĝ(tf )||


→ 0. To this end, we perform 6 simulations

corresponding to each plot in Figure 2, wherein the number of basis centers and corresponding fill distance h vary. Each
simulation begins with all agents traversing a “lawnmower” path and collecting samples g(ΞL) ∈ RL associated with the
basis centers as seen in Figure 2. For simplicity, the subdomains {Ωi}4

i=1 are arbitrarily chosen to divide the domain Ω
equally. Indeed other approaches such as Voronoi-based decompositions could be used as well. The coefficients 𝛼 ∈ RL

of the finite dimensional approximation are initialized such that

F I G U R E 2 The true spatial field g induced by the 5/2 Matern kernel overlaid with the sample trajectories of the N = 4 agents and the
kernel basis centers ΞL ⊂  for the finite-dimensional estimator ĝL. To illustrate the influence of the number of basis functions and fill
distance on ĝL, we perform a simulation corresponding to each plot.
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1954 GUO et al.

𝛼0 = K(ΞL,ΞL)−1g(ΞL),

and at each subsequent time step tk (k=1,2,...), all agents collect the next sample along their lawnmower trajectory and
the coefficients 𝛼tk−1 are updated in accordance with the evolution law (27). Note that the step-size is fixed to 0.01 and
𝛾 = 0.01 in all experiments. Each simulation ends once the agents have completed their trajectories, and we denote this
final time as tf . In Figure 3A, we see that as L = |ΞL| increases, the prediction error measure ||g − ĝL(tf )||() tends to 0.
For each L ∈ {65, 481, 1281, 2465, 4033} there is an associated fill distance hΞL, . In Figure 3B we see that as the fill distance
hΞL, decreases, the prediction error measure tends to 0, which is consistent with Corollary 2. The black traces in plots
(a) and (b) correspond to the ideal setting in which the hyperparameters 𝜃ĝ of the estimator align precisely with the
hyperparameters 𝜃g of the true function g. In more practical settings, such as terrain or temperature mapping applications,
𝜃g is not typically known, and a practitioner may have to rely on rough estimate of the magnitude and length-scale of the
spatial field to select 𝜃ĝ. To emulate this scenario, we perform simulations for 𝜃ĝ = c𝜃g for various scale factors c ∈ R+.
From the colored traces in Figure 3, we see that even if 𝜃ĝ ≠ 𝜃g, the prediction error measure still tends to 0 as the fill
distance approaches 0.

We also carried out a series of simulations to study the numerical conditioning of the approach in this article. Recall
that the update law (27) requires the inversion of the Grammian matrix K(ΞL,ΞL). When the condition number of Gram-
mian matrix is sufficiently large, the matrix can become numerically singular so that the inverse update effectively
becomes unstable, despite using a rank-1 update.51 We report the condition number of K(ΞL,ΞL) in Figure 3C and remark
that no numerical instability was exhibited in these experiments.

F I G U R E 3 Prediction error measure ||g − ĝL(tf )||() as (A) the number of basis centers ΞL = {𝜉i}L
i=1 increases, and (B) as the fill

distance h decreases. The black traces reflect the ideal scenario in which the hyperparameters 𝜃ĝ of the estimator are equal to those of the
spatial field. The colored traces reflect the practical scenario in which 𝜃g is unknown, and the hyperparameters of the estimator are set to a
scalar multiple of 𝜃g. The condition number cond(K(ΞL,ΞL)) of the Grammian matrix K(ΞL,ΞL) is reported in subplot (C).

F I G U R E 4 Prediction error measure ||g − ĝL(tf )||() as (A) the number of basis centers ΞL = {𝜉i}L
i=1 increases, and (B) as the fill

distance h decreases. We also report the condition number of the Grammian matrice in (C). The black traces reflect the ideal scenario in
which the kernel of the estimator is equal that of the spatial field. The colored traces serve to illustrate the behavior of the estimator when the
kernel does not precisely match the kernel of g.

 10991115, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/acs.3442 by L

ehigh U
niversity L

inderm
an L

ib, W
iley O

nline L
ibrary on [12/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GUO et al. 1955

Moreover, in practical applications, the kernel of the RKHS to which the function g belongs is seldom known. To
observe the effect of kernel selection on predictive performance, we perform the same simulations in the preceding para-
graph, but rather than scale the hyperparameters 𝜃ĝ of the estimator, we fix the hyperparameters 𝜃ĝ = 𝜃g and observe
the predictive performance when the kernel of the estimator is the squared exponential kernel, the 1/2 Matern kernel,
the 3/2 Matern kernel, and the 5/2 Matern kernel (the true kernel); see Figure 4. Here, the approximation error associ-
ated with the 3∕2 and 1∕2 Matern kernels approach 0. For the squared exponential kernel, results corresponding to fill
distances of 0.41 and smaller were unobtainable because the Grammian matrix K(ΞL,ΞL) becomes numerically singu-
lar for high dimensions L. It is also noteworthy that all Matern kernels studied in Figure 4 exhibit significantly lower
condition numbers compared to the squared exponential kernel having smaller fill distances (and correspondingly, high
dimensions). At the very least, these studies suggest that further investigation is warranted to understand the practicality
and numerical stability of the RKHS embedding method for various kernel choices. We also note that these observations
regarding numerical stability and the potential for conditioning problems are well-known in other contexts for scattered
data approximations. See Chapter 12 of Reference 35 for a general discussion of conditioning of Grammian matrices, as
well as the References 52-54 for the development of preconditioning methods that address these stability issues.

In the previous empirical studies, the set of basis centers ΞL was fixed a priori. This final set of numerical simulations
is designed to illustrate the behavior of the estimator whenΞL is iteratively updated as new measurements are collected, as
outlined in Algorithm 1. The trajectory for the agents is generated by concatenating the first four lawnmower trajectories
(associated with the labels L = {65, 225, 481, 1281} depicted in Figure 2) so that the agents collect samples along the
initially coarse grid and progressively refine the resolution of the sampling trajectory. We simulate the case when the
estimator kernel hyperparameters 𝜃ĝ match those of the spatial field 𝜃g, as well as the case when 𝜃ĝ = c𝜃g for various scalar
multiples c ∈ R+. In Figure 5A we observe the evolution of L = |ΞL| over time. Note that we use the magnitude of the
projection residual (28) as the novelty metric 𝜖 to decide whether or not to add the location x ∈  of a new sample to ΞL.

F I G U R E 5 For the setting in which the basis centers are iteratively constructed, these plots depict the time evolution of (A) the
number of basis centers contained in ΞL, (B) the fill distance hΞL ,

, and (C) the prediction error measure ||g − ĝL(tk)||

F I G U R E 6 Depicted is the (A) true spatial field g, (B) estimated spatial field ĝL(tf ), (C) error field |g − ĝL(tf )|, each overlaid with the
kernel basis centers contained in ΞL for the case when the hyperparameters of the estimator ĝL coincide with those of g.
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1956 GUO et al.

The novelty threshold 𝜖 is tuned for each set of estimator hyperparameters so as to yield approximately the same number
of basis functions. Observe that around timestep tk = 2000, L begins to saturate along with the fill distance, shown in
(b). In subplot (c), we see that as the fill distance decreases, the prediction error measure ||g − ĝL(tk)||() tends to zero as
expected. For the simulation in which 𝜃ĝ = 𝜃g, we plot, in Figure 6, the true spatial field, the estimated spatial field, and
error field at the end of the simulation, each overlaid with the locations of the kernel centers ΞL. Qualitatively speaking,
the estimated spatial field ĝL agrees well with the true spatial field g, as evidenced by the small magnitude of the error field.

5 CONCLUSIONS AND FUTURE WORK

In this article, we propose and study an online method for estimating the unknown external field using the multiagent
system. Without parameterization, we cast the estimation problem in the infinite-dimensional RKHS of functions, and
propose the evolution law in (4). We have shown that the evolution law (4) for the proposed infinite-dimensional estimator
is well-posed and yields a unique solution ĝ(t) ∈  . Moreover, convergence analysis is given for the pointwise ideal error
|g(x) − ĝ(t, x)| as t → ∞ over the region that is persistently excited. The finite-dimensional estimator in RKH subspaces is
then studied to approximate the ideal estimation result. We prove that the approximation error ‖ĝ(t) − ĝL(t)‖



is bounded
in terms of the fill distance h of basis centers which are used to construct the approximation subspace. As the dimension
L → ∞ and the fill distance h → 0, the approximation error converges to zero. Numerical examples are given to verify the
results in several different scenarios.

While the results in this article are given for the ideal centralized setting, it serves as the groundwork for the more
practical, yet complex, multi-agent estimation settings. Consider, for example, the decentralized setting in which each
agent i = 1 ∶ N is subject to various network topologies and must combine its local observations with information from
neighboring agents to form its own individual estimator ĝi(t). Of particular interest are conditions under which ĝi(t) → g
as t →∞ for each i = 1, … ,N.
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