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Abstract— Subordinate Oscillator Arrays (SOAs) can be
shown theoretically to provide vibration attenuation that is
characterized by a frequency response function with a mag-
nitude that is approximately flat over a finite bandwidth.
However, the actual performance of SOA designs can suffer
due to uncertainties in the structural parameters of the host
and SOA. In this paper, we describe a piezoelectric composite
SOA that can be used either actively or passively to account
or correct for uncertainties in structural parameters that result
from fabrication. This paper uses thermodynamic variational
principles to derive the equations of motion for the active SOA
formed using piezoelectric composites. We discuss techniques
to optimize vibration attenuation for the SOA with fabrication
errors using the piezoelectric appendages in the SOA.

I. INTRODUCTION

Many researchers have studied the vibration absorption
effects of attaching multiple substructures to a primary struc-
ture [1], [2], [6], [15]. These substructures have been referred
to as Subordinate Oscillator Arrays, or SOAs. Reference
[15], for example, has shown that careful prescription of
distribution of the physical properties of the SOA can render
flat the amplitude of a resonant peak in the frequency
response function of the primary structure. The total mass
of the SOA in this analysis can be relatively small when
compared to that of the primary structure. In order to design
the SOA, the structural properties of the primary structure
and the SOA must be known precisely. In practice the SOA
must be manufactured so that its properties match closely
with the design specifications. The sensitivity of performance
to errors in the properties of the primary structure and the
SOA is also studied in [17]. It is shown that fabrication errors
have a profound effect on the performance of the SOA.

For these reasons, the authors seek to model, design,
fabricate, and test an SOA that has the potential to either
optimize the structural properties, or to actively modify the
structural properties, of the SOA to improve after-fabrication
performance of the SOA. The fundamental design approach
relies on the incorporation of piezoelectric appendages with
appropriate shunt circuits into the SOA. The authors in
[12] have derived the governing electromechanical equations
of motion for such a piezoelectric composite SOA, and
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we have shown that changing the distribution of the shunt
properties can achieve the desired flat frequency response
for the SOA. We have likewise shown in [12] that the
introduction of nonlinear switching strategies can effectively
channel vibration energy into the shunt capacitor network of
the SOA.

In this paper, the authors seek to extend the analysis in
[15] to obtain analytic representations of the FRF from input
excitation to primary vibration with the attached piezoelectric
composite SOA. Such a representation will then facilitate
the design of the composite piezoelectric SOA by providing
analytic estimates of performance for the distribution of the
structural properties of the SOA and distributions of the
properties of the electrical properties of the attached shunt
circuits.

that the total attachment mass required to produce such a bandpass response is given by
Âmn/mp ⇡ D2/3.5. For the discussion that follows, errors will be introduced to the mass, stiff-
ness and damping distributions of the subordinate set to represent disorder due fabrication
variation.

3 Simulation of the Effect of Fabrication Disorder
Numerical simulation of the performance of such systems that include the effect of fabrication
tolerances indicate that small errors in geometric dimensions have a profound effect on the
degree to which the oscillator array alters the system response. Evaluation of Eq. 1 is used to
illustrate the effects of introducing prescribed errors in the property distributions of the attached
resonators (mass mn, stiffness kn, and resonator quality factor Qn =

p
mnkn/cn). The prescribed

errors are specified relative to the as-designed mass, stiffness, and quality factor values.

Figure 3 demonstrates the effect of increasing disorder on system response. This example
is the impulse response of a primary structure with a 25 element array designed to result
in a 20% bandpass response. The discorded property distributions are specified by adding
normally distributed random values of specified standard deviations to the original ’as-designed’
distributions.

The four examples shown in Fig. 2 indicate increasing ripple across the band with increasing
disorder levels. This unwanted deviation becomes apparent at error levels of approximately one
part in one thousand.

Any of the fabrication processes under consideration for producing oscillator arrays, such as
laser cutting, water jet, or traditional machining have fabrication tolerances no better than 0.002
inches (0.05 mm). This is problematic, particularly as size scales shrink for higher frequencies
or low mass systems. For example, an oscillator array designed to filter a 10kg, 1000Hz system
would require individual elements with mean length of less than an inch,a mean width of less
than a quarter inch, and thickness of approximately 0.025 inches. A device of this size will
exhibit undesirable response characteristics regardless of the manufacturing method used.

Figure 1: N + 1 degree of freedom model of a mechanical system with N subordinate ele-
ments attached to the primary resonator. Each element has a distinct mass mn, stiffness kn,
and damping cn. The ranges of subordinate element properties are specified by prescribed
distributions.
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Fig. 1: A Host Structure with a Subordinate Oscillator Array
(SOA): a Multi-Degree of Freedom System (MDOF) from
[15], [17].

II. PIEZOELECTRIC SOA MODELING

A. Piezoelectric Composite Modeling using Variational
Principle

Smart Material researchers have developed various formu-
lation for modeling of linear as well as nonlinear piezoelec-
tric structures. A review through early literature such as [14]
would show that they were restricted to linear piezoelectric
systems whereas emphasis on nonlinear piezoelectric sys-
tems modeling has been given in recent literature such as
[18], [19]. The general approach used in all these studies
involve a modified Hamilton’s principle which is based
on electric enthalpy density H. A different approach for
modeling of electromechanical systems is shown in [5]. It is
shown that finite dimensional as well as infinite dimensional
electromechanical systems can be modeled using charge or
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voltage variational methods. The approaches shown in [5] re-
sults in the Lagrange’s equations for finite dimensional elec-
tromechanical systems in terms of displacement and charge
or displacement and voltage as the generalized variable. The
approaches summarized in [5] are also shown in [11]. But
[11] further extends these approaches and introduces the
extended Hamilton’s principle to model linear piezoelectric
systems. The approach can also be applied to piezoelectric
systems coupled with shunt circuits with slight modifications.
The governing equations of linear piezoelectric systems can
be derived in terms of internal energy which is shown in
chapter 5 of [8]. In the following subsection, we are going
to introduce the variational principle that was used to model
the the primary structure attached with a piezoelectric SOA.

B. TheVH-Variational Principle
The Hamilton’s principle states that the actual trajectory

followed by any mechanical system must satisfy the varia-
tional identity

δ

∫ t1

t0

(T − V)dt+

∫ t1

t0

δWncdt = 0

for all possible variations in the configuration space. In the
equation shown above, T is the total kinetic energy of the
system, V is the total potential energy and δWnc is the virtual
work done by the non-conservative work done by the external
forces acting on the system. The variational principle that
is used to model linear piezoelectric systems is a modified
form of the classical Hamilton’s principle shown above. The
variational principle to model a linear piezoelectric system
will have the form

δ

∫ t1

t0

(T − VH)dt+

∫ t1

t0

δWH,ncdt = 0 (1)

for all possible variations in the configuration space. The
above equation has been expressed in terms of electric en-
thalpy density H. In the above equation, T is the total kinetic
energy of the system, VH is the potential that depends on the
electric enthalpy density, displacements and flux linkages and
δWH,nc is the virtual work done by the electromechanical
loads on the system. This is the variational principle shown
in Section 4.8 of [11]

C. Finite Dimensional Piezoelectric SOA Model
The overall configuration of the primary structure, the

attached SOA, and the network of capacitive shunts attached
to the linearly piezoelectric composite appendages is de-
picted in Figure 2. The variational formulation outlined in the
previous subsection will now be used to derive the governing
equations of primary structure with the attached composite
piezoelectric SOA. The geometry of each substructure is
shown in the Figure 3. The total kinetic energy for a SOA
attached to a primary structure is written in the form

T =
1

2
mpẋ

2
p +

N∑
i=1

{
1

2

∫ Li

0

ρiAi

(
ẋp +

∂wi
∂t

)2

dxi

+
1

2
mi

(
ẋp +

∂wi
∂t

(t, Li)

)2}
.

Primary
Structure

Bimorph
Beam

Fig. 2: The Host or Primary Structure, the Attached SOA,
and the Capacitively Shunted Piezoelectric Composites.

where N is the number of sub-structures, xp is the dis-
placement of the primary structure, wi := wi(t, xi) is
the displacement along each sub-structure i at the loca-
tion x1(i), mi is the tip mass attached to sub-structure
i, Li the length of the ith sub-structure, ρi and Ai are
the the mass density and cross-sectional area of the ith

sub-structure respectively. We use Galerkin methods to
build approximations for the transverse displacement wi :=
wi(t, xi) of each appendage. We construct the approximation
wi(t, xi) =

∑ni

k=1 ψi,k(xi)wi,k(t) = ΨT
i (xi)Wi(t) =

W T
i (t)Ψi(xi) for i = 1, . . . , ni, with the vectors Ψi and

Wi defined as Ψi :=
{

Ψi,1 · · · Ψi,ni

}T
and Wi :={

Wi,1 · · · Wi,ni

}T
. The total kinetic energy will have

the form

T =
1

2
Mppẋ

2
p +

N∑
i=1

1

2

(
2MT

ipẆiẋp + Ẇ TM iiẆi

)
,

where mii := miΨi(Li)Ψ
T
i (Li), mip := miΨi(Li),

Mi :=
∫ Li

0
ρiAidxi, Mip :=

∫ Li

0
ρiAiΨidxi, Mii :=∫ Li

0
ρiAiΨiΨ

T
i dxi, Mpp := mp +

∑N
i=1Mi, Mi =

Mi +mi, M ii = Mii +mii, and M ip = Mip +mip.
The expression for the electric enthalpy density for the
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Fig. 3: Detailed Illustration of a Typical Piezoelectric Com-
posite Appendage Connected to an Ideal Electrical Network

piezoelectric substructure has the form Hi := 1
2CiS

2
i −
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eiSiEi − 1
2εiE

2
i where Ei = Ei(xi) is the electric field and

Si is the axial strain in the zi direction. We use Bernoulli-
Euler beam theory for simplifications of each sub-structure.
Hence, the axial strain S1 = −zi ∂

2wi

∂x2
i

. If Ci = CE11,i is the
stiffness coefficient, ei = e31,i is the piezoelectric coefficient,
Si = S11,i is the axial strain in the xi direction, Ti = T11,i

is the axial stress in the xi direction, Ei = E3,i is the
electric field in the zi direction, and Di = D3,i is the
electric displacement in the zi direction, as per the linear
piezoelectric constitutive laws, we have the relation{

Ti
Di

}
=

[
Ci −ei
ei εi

]{
Si
Ei

}
.

By the electrostatic approximation for linear piezoelec-
tricity, the divergence of electric field is zero. We have the
expression Ei := E3,i = −∂φi

∂zi
. Assuming that the potential

across the piezoelectric strip in each sub-structure varies
linearly, we obtain

Ei(xi, yi, zi) =


− Vi

tp,i
(xi, yi, zi) ∈ top patch,

Vi

tp,i
(xi, yi, zi) ∈ bottom patch,

0 otherwise,

where Vi is the voltage across the piezoelectric strip. The
electric enthalpy VHi of the substructure i can be expressed
as VHi =

∫ Li

0
AiHidxi. The electric enthalpy for the ith

substructure, after substituting the expressions for strain and
electric field, has the form

VHi =

∫ Li

0

[
1

2
CiIi

(
∂2wi
∂x2

i

)2

− eiκi
tp,i

χ[ai,bi]
∂2wi
∂x2

i

Vi

]
dxi

− 1

2

εi2Ap,i(bi − ai)
t2p,i

V 2
i −

1

2
CiV 2

i ,

where (CiIi)(xi) :=
∫ ∫

Ciz
2
i dyidzi and κTi :=∫ ∫

AT
zidyidzi for the top patch, κBi :=

∫ ∫
AB

zidyidzi for
the bottom patch, κi := κT,i−κB,i, and Ci is the capacitance
of the capacitor attached to the piezoelectric strip.

We now substitute the same Galerkin approximation of
the transverse displacement of the sub-structure i we sub-
stituted into the kinetic energy expression, wi(t, xi) :=∑ni

k=1 ψi,k(xi)Wi(t) = ΨT
i Wi = W T

i Ψi. Now, we can
express the electric enthalpy of the of the piezoelectric SOA
attached to a primary structure as

VH :=

N∑
i=1

(
1

2
W T

i KiiWi −BT
i WiVi

− 1

2
DiV

2
i −

1

2
C〉V 2

i

)
+

1

2
kpx

2
p,

with the constants defined as Kii :=
∫ Li

0
CiIiΨ

′′
i Ψ

′′,T
i dxi,

Bi :=
∫ Li

0
κiei
tp,i

χ[ai,bi]Ψ
′′

i dxi, and Di :=
εi2Ap,i(bi−ai)

t2p,i
.

We define new vectors and matrices in order to simplify
the expressions of kinetic energy, electric enthalpy and non-
conservative virtual work done. We have

W :=
{
W1 . . . WN

}T
, V = �̇ :=

{
V1 . . . VN

}T
,

� :=
{
λ1 . . . λN

}T
, Mp :=

{
M1p . . . MNp

}T
,

and define associated block matrices as

M := diag(M1, . . . ,MN ), B := diag(B1, . . . ,BN ),

K := diag(K11, . . . ,KNN ), D := diag(D1, . . . , DN ),

C := diag(C1, . . . , CN ).

The expressions for kinetic energy, electric enthalpy, and
virtual work done can now be expressed as

T =
1

2
(Mppẋ

2
p + 2ẋpM

T
p Ẇ + ẆTMW),

VH =
1

2
(WTKW− 2VTBTW− VTDV− VTCV + kpx

2
p),

δWnc = Fδxp − δxpCpẋp − δWTCẆ.

With the required expressions derived, we can now apply
the extended Hamilton’s principle to model our system. The
kinetic energy, electric enthalpy and the virtual work done
should satisfy equation 1. The variational statement stipulates
that∫ t1

t0

{
Mppẋpδẋp + MTp Ẇδẋp + ẋpM

T
p δẆ + δẆTMẆ

}
dt

−
∫ t1

t0

{
δWTKW− δVTBTW− δWTBV− δVTDV

− δVTCV + kpxpδxp

}
dt

+

∫ t1

t0

{
Fδxp − δWTCẆ− δxpCpẋp

}
dt = 0

for all admissible variations. After performing standard pro-
cedures from variational calculus, we find that∫ t1

t0

{
δxp

(
−Mppẍp − MpẄ− Cpẋp − kpxp + F

)
+ δWT

(
−Mpẍp − MẄ− CẆ− KW + BV

)
− δ�T

(
BT Ẇ + DV̇ + CV̇

)}
dt+ variational BCs = 0·

The above expression must hold for all admissible variations
δxp, δW, and δ� in the electromechanical configuration
space. We conclude that the governing equations of the
piezoelectric SOA attach to a primary structure are[

M Mp
MTp Mpp

]{
Ẅ
ẍp

}
+

[
C 0
0T Cp

]{
Ẇ
ẋp

}
+

[
K 0
0T kp

]{
W
xp

}
−
[
B
0

]
V =

[
0
F

]
, (2)

and

BT Ẇ + DV̇ + CV̇ = 0· (3)

III. FREQUENCY RESPONSE FUNCTION

In [15], Vignola et. al. showed that prescribing the distri-
bution of the properties of the SOA can be used to tailor the
response of the whole system. In this section, we will derive
the transfer function and the frequency response function
from the force applied to the primary structure to its motion.
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Integrating Equation 3 with respect to time and rearranging
it, we get

V = = −(D + C)−1BW· (4)

Equation 4 governs the voltage across the capacitor attached
to each substructure in the SOA as a function of the dis-
placement of the SOA. Taking the Laplace transform and
substituting the result in Equation 2, we have[

Ms2 + Cs+ K̂ Mps2

MTp s
2 Mpps

2 + Cps+ kp

]{
W
xp

}
=

[
0
f(s)

]
,

(5)

with K̂ := K + B(D + C)−1B.
We next seek to obtain a form for the Equations governing

the primary and SOA that resembles that in reference [15].
In order to remove the mass coupling terms in equation 5,
we introduce a change of variables which is given by{

W
xp

}
=

[
I −α

0T 1

]{
Xs
xp

}
with α = M−1Mp. Physically, the change of variables can be
understood as introducing a suitably weighted measure of
total displacement Xs := W +αxp. Substituting the change
of variables into equation 5 and pre-multiplying by the
transpose of the matrix that defines the change of variables,
we get[

Ms2 + Cs+ K̂ −(Cs+ K̂)α

−((Cs+ K̂)α)T M̂pps
2 + Ĉps+ k̂p

]{
Xs
xp

}
=

[
0

fp(s)

]
(6)

where M̂pp = (Mpp − αTMp), Ĉp = (Cp + αTCα), k̂p =
(kp + αT K̂α). By introducing the change of variables, we
have removed the off-diagonal mass blocks Mp and MTp from
the equations of motion. From Equation 6, we have

Xs = (Ms2 + Cs+ K̂)−1(Cs+ K̂)αxp, (7)

−((Cs+ K̂)α)TXs + [M̂pps
2 + Ĉps+ k̂p]xp = fp(s). (8)

Equation 7 represents the relation between the motion of
the substructures to the motion of the primary structure. We
can get the transfer function relating the force applied to the
primary structure to the motion of the same by substituting
Equation 7 into Equation 8.

xp(s)

fp(s)
=

{
Mpps

2 + Cps+ kp +

N∑
n=1

[
− αnMp,ns

2

+ α2
nCnns+ α2

nK̂nn −
(Cnnαns+ K̂nnαn)2

Mnns2 + Cnns+ K̂nn

]}−1

(9)

It is imperative that the matrices M, K, C, B and D are
diagonal in order that Equation 9 holds. This is possible
only when we use modal or Fourier shape functions. Also,
the transfer function shown in Equation 9 holds for a
single mode approximation although the transfer function

for multiple mode approximation looks very similar. The
frequency response function is now obtained by substituting
s = iω into Equation 9,

xp(iω)

fp(iω)
=

{
−Mppω

2 + iCpω + kp

+

N∑
n=1

[
αnMp,nω

2 + α2
n

[
iCnnω + K̂nn

− (iCnnω + K̂nn)2

−Mnnω2 + iCnnω + K̂nn

]]}−1

.

(10)

The non-dimensional frequency response function can be
obtained by dividing Equation 10 by the stiffness of the
primary structure. The non-dimensional frequency response
function is

xpkp
fp

=

[
1− Ω2 +

iΩ

Qp

+

N∑
n=1

α̂n

Ω2 +
−Ω2

(
1 + iΩ

βnQn

)
1− (Ω

β )2 + iΩ
βnQn

−1

, (11)

where

Ω = ω

√
Mpp

kp
, α̃n =

Mnn

Mpp
,

βn =

√
γn
α̃n

, γn =
K̂nn

kp
, (12)

Qn =

√
MnnK̂nn

Cnn
, α̂n = α2

nα̃n.

The analysis above yields a frequency response function
for the SOA with capacitive shunts in Equation 11 that
looks similar to the one shown derived for lumped systems
studied in [15]. In the equation of the frequency response
function, the term βn is the non-dimensional frequency
of each substructure. It is the frequency each substructure
has when it is not connected to the rest of the system. It
is obvious that the term γn does not appear in the final
equation of the frequency response function because the non-
dimensional mass α̃n, non-dimensional stiffness γn and the
non-dimensional frequency βn are related and interdepen-
dent. Qn and Qp represent the quality factor is the nth

substructure and the primary structure respectively.

IV. SOA DESIGN METHODOLOGY

Now that we have the expression for the frequency re-
sponse function of the primary with the attached SOA, we
can alter its response to excitation by varying the structural
parameters of the SOA. Tailoring the frequency response
function can be achieved by altering the distribution of mass
properties, the distribution of structural stiffness, the distri-
bution of capacitance, or a combination of these properties.
We choose a distribution for βn that was used by Vignola
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et. al in [15]. This distribution is expressed as

βn =


∆
2

((
2(n−1)
N−1

)p
− 1

)
+ 1 for n ≤ N

2 ,

∆
2

(
1−

(
2(N−n)
N−1

)p)
+ 1 for n ≥ (N+1)

2 .

(13)

The distribution function expressed in Equation 13 will
generate βn values that are centered at 1. The βn values are
distributed around the non-dimensional center frequency (
that is equal to one) to form a band. The width of this band
is decided by ∆. The term p in the distribution function is the
exponent that decides the shape of the curve that prescribes
the values of βn.

In order to design the SOA, we first design a substructure
whose resonant frequency matches that of the primary struc-
ture. Then we choose the distribution for the non-dimensional
frequency. The non-dimensional mass of each substructure
can be calculated using the relation shown in equation 12.
The tip mass of each substructure is subsequently calculated
using the expression

mi =
−(α̃nmp + α̃nρAL) + ρA

∫
ψ(x)2dx

α̃n − ψ(L)2
. (14)

Using the above design strategy, we get a piezoelectric
array in which each substructure differs only in terms of the
tip mass.

It will often be convenient if we can select a fixed tip
mass and instead vary the capacitance for each substructure.
This would constitute a new method for modifying easily the
SOA performance post fabrication. In this case, we calculate
the non-dimensional stiffness instead of the non-dimensional
mass. Then the capacitance for the nth substructure circuit
is given as

Cn =
B2
n

K̂n − Kn
−Dn. (15)

V. RESULTS

The design strategies that were introduced in the previous
section were implemented and frequency response of the
primary structure with a piezoelectric SOA was simulated.
The simulation was performed when C = 6.9e + 10 Pa,
ρm = 2.3e + 3 kg/m3, N = 55 L = 0.5 m, w = 0.025 m,
t = 0.003 m, a = 0.25 L, b = 0.75 L, tp = 0.0005 m,
e31 = −10.4 C/ m2, ε = 13.3 nF/m, mp = 2000 kg,
Kpp = 2.5466e + 06 N/m, ζprimary = 0.0001, ζSOA =
0.001, C = 0 F. Note that in this case, we considered
a piezoelectric SOA with no capacitive shunts attached to
it. Using the βn values generated from equation 13 when
p = 1 and ∆ = 0.09, the non-dimensional mass distribution
was calculated using equation 12. The tip mass of each
substructure calculated using equation 14 is shown in figure
5. Figure 4 shows the magnitude of the frequency response
function that relates the displacement of the primary structure

to the force applied on it when it is attached to an SOA
with tip masses shown in figure 5. In the second case,
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Fig. 4: Frequency Response Function from External Force
Input to Displacement of the Primary Mass when the Tip
Mass is Varied
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Fig. 5: Distribution of Tip Mass of Each Appendage that
Results in Frequency Response shown in Figure 4

we considered a SOA with fixed tip masses and capacitive
shunt circuits with varying capacitance attached to it. The
simulation was performed with the same properties used in
case 1 including the non-dimensional frequency distribution
except N = 55, Kpp = 1.2733e + 06 N/m, tp = 0.0015 m
and mtip = 0.00814 kg. In order to reduce the effect of
piezoelectric strips’ capacitance, we attached a capacitor
C̃i = 1 nF in series with each piezoelectric strip. The net
capacitance Di,net = DiC̃i

Di+C̃i
was used in the simulation

of our system instead of Di. The non-dimensional stiffness
constant was calculated using the relation in equation 12. The
capacitance of the capacitor attached to the substructures is
calculated using the expression shown in equation 15. Figure
7 shows the distribution of the capacitance values calculated
for this case. Figure 6 shows the frequency response function
from the force applied to the primary structure to the
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displacement of the primary mass when the tip mass is kept
constant and the capacitance values are varied as shown in
figure 7.
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VI. CONCLUSIONS

This paper has introduced a strategy for tailoring the
distributions of electromechanical properties of linear piezo-
electric composite SOAs to achieve spectrally flat vibration
attenuation near a resonant frequency of interest of the
primary structure. The model of the the primary with the
attached SOA is derived using the VH-variational formula-
tion for electromechanical systems that consist of linearly
piezoelectric continua that are connected to ideal electrical
networks. When a single mode approximation is used for

representation of displacements in each appendage, the non-
dimensional frequency response function from the external
force applied to the primary structure to the displacement of
the primary structure is obtained. With the introduction of
a capacitive shunt network in the design, we show that it
is possible to modify the distribution of capacitances in the
shunt circuit to achieve spectrally flat vibration attenuation.
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