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ABSTRACT

It has been shown theoretically that by prescribing the
mass and stiffness distributions of a subordinate oscillator ar-
ray (SOA) that is attached to a host structure, significant vibra-
tion attenuation of a host can be obtained over a finite frequency
range. This case stands in stark contrast to classical vibration
isolator designs for two degree of freedom systems that achieve
exact vibration cancellation at a single isolated frequency. De-
spite the attractiveness of SOAs for the design of broader band
vibration suppression, the theoretically desired result can deteri-
orate rapidly due to small fabrication imperfections in the SOA.
This paper introduces and compares variational thermodynamic
Sformulations of composite piezoelectric SOA that are designed
to be adjustable in real-time to ameliorate the effects of disorder
due to fabrication in a SOA.

INTRODUCTION

Previous work by the authors and other researchers in
[14,6,1,2] have studied vibration attenuation methods for a pri-
mary structure that are based on attaching to it an array of sub-
structures or appendages. An iconic example of such a finite
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dimensional, multi-degree of freedom system is depicted in Fig-
ure 1. Systems of this type have been referred to as host struc-
tures equipped with subordinate oscillators arrays, or SOAs. In
effect, the strategy of such an approach is to design the physi-
cal properties of the attached structures to rapidly transfer vibra-
tional energy from the host to the SOA. It has been shown that a
judicious choice of the mass or stiffness distributions of the SOA
can result in vibration attenuation in the host that is characterized
by a relatively flat frequency response over a range of excitation
frequencies. Such an example response is depicted in Figure 2
from [14, 16]. It is perhaps suprising that this performance can
be achieved, in principle, with SOAs that have a total mass that
is relatively small compared to the mass of the host structure.
Unfortunately, analytic predictions of vibration attenuation fea-
turing such a relatively flat host frequency response in Figure 2
can be quite sensitive to perturbations in the structural properties
of the host or SOA. Figure 3 illustrates the effect of introducing
disorder on the frequency response function of the host.

One of the implications of these observations is that the
structural properties of the host and SOA must be known pre-
cisely to achieve theoretical assurances of the performance in
practice. Even if the structural properties of the host are known
exactly, the fabrication of SOAs must conform closely to design
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FIGURE 1: A host structure with a subordinate oscillator ar-
ray (SOA): a finite dimensional, multi-degree of freedom system
from [14, 16].
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FIGURE 2: The distribution of mass and stiffness properties are
designed to obtain vibration suppression over a finite bandwidth
from [14,16].
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FIGURE 3: The effects of disorder or fabrication errors induce a
deterioration of analytic predictions of vibration attenuation from

[14,16].

specifications. Therefore, it would be highly advantageous to
be able construct an SOA that is an active system, one that can
change its structural properties to account for introduced fabrica-
tion errors.

In this paper we study detailed modeling of piezoelectrically
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FIGURE 4: The host structure with piezoelectrically actuated
SOAs: a distributed parameter system

actuated SOAs as depicted in Figure 4. We begin by review-
ing variational formulations expressed in terms of the electric
enthalpy density .7 for linear piezostructural systems that are
coupled to an ideal electrical network. We show how such a for-
mulation can be understood as a generalization of the displace-
ment and flux linkage formulation for electromechanical systems
made popular following references such as [5], orin [13, 18, 17].
We introduce a novel complementary variational principle that is
expressed in terms of the internal energy density %/, displace-
ment, and charge. The complementary variational principle can
be viewed as a generalization of the displacment and charge for-
mulation in [5] for finite dimensional electromechanical systems
to piezoelectric continua that are connected to an ideal electrical
network.

THERMODYNAMIC VARIATIONAL PRINCIPLES

Methods for constructing models of linear and nonlinear
piezoelectric composites have a long history and different for-
mulations have appeared in the literature over the years. Early
efforts such as in [13] are restricted to consideration of linear
piezoelectric continua, while more recent efforts such as in [18]
or [17] summarize the relevant theory for nonlinear piezoelec-
tric systems. Roughly speaking, the approaches in these rep-
resentative studies, and similar ones such as in [17], introduce
a variational principle that modifies Hamilton’s principle from
classical mechanics with one that is cast in terms of the electric
enthalpy density .77. These references do provide an electric en-
thalpy density based variational principle for piezoelectric con-
tinua coupled to an ideal electrical network.

A related but different viewpoint follows from the early ap-
proaches summarized in [5]. The approach in [5] is significant
in that it formulates quite general methods for deriving the equa-
tions of motion of coupled, finite dimensional electromechanical
systems. From first principles, it is shown that electromechan-
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ical systems that evolve in a finite dimensional state space can
be modeled using complementary charge or voltage variational
methods. While [5] focuses on general finite dimensional elec-
tromechanical systems, it also includes a chapter on distributed
parameter systems, i.e., ones that have an infinite dimensional
state space. Still, reference [5] does not discuss a variational
formulation for a continuum of piezoelectric material coupled to
an ideal electrical network. The culmination of the approaches
in [5] yields Lagrange’s equations for finite dimensional elec-
tromechanical systems in terms of the displacement and charge
formulation, or the displacment and flux linkage formulation.

These two formulations are also summarized in [11] in Sec-
tion 3.4. [5, 1 1] Reference [! 1] goes still further, however, and
introduces a modification of Hamilton’s principle to linear piezo-
electric continua in Chapter 4.8. that is cast in terms of the dis-
placement and flux linkage. It is noted in [I1], however, that
the variational problem is in fact formulated in terms of the elec-
tric enthalpy density. Hence, the variational approach in [11] is
identical to that in [13, 18, 17]. With a minor modification, the
approach derived in [11] is applicable to piezoelectric continua
coupled to ideal electrical networks.

Still, other formulations such as in [8] derive finite dimen-
sional governing equations in Chapter 5 for linear piezoelectric
continua in terms of the internal energy %/. The relationship of
the equations of motion generated by approximations of the in-
ternal energy such as in Chapter 5 of [8] to the variational meth-
ods [13], [18], [17], or [1 1] cast in terms of the electric enthalpy
density ¢ is not addressed in any of these references.

In the next few sections we will introduce a variational for-
mulation based the internal energy % of a linear piezoelectric
that is coupled to an ideal electrical network. It can be under-
stood as a generalization of the complementary variational state-
ment in the sense of [5, | 1] that is cast in terms of displacement
and charge for finite dimensional electromechanical systems.

When we introduce the complementary thermodynamic
variational principles for linear piezoelectricity, they will be
based on modifications of the classical form of Hamilton’s prin-
ciple for nonconservative systems. Recall that the classical form
of Hamilton’s principle [10] states that the actual trajectory of a
mechanical system satisfies the variational identity

t t
5[ (T—ydi+ [ $Wyedt =0

fo fo

for all admissible variations of the actual trajectory in mechanical
configuration space. In this equation 7 is the kinetic energy, ¥
is the mechanical potential energy and 6W,,. is the virtual work
performed by any nonconservative mechanical forces acting on
the mechanical system.

The s7-Variational Principle

We now consider the first thermodynamic variational prin-
ciple for a linear piezoelectric continua  that is coupled to an
ideal electrical network. It is expressed in terms of the electric
enthalpy density .77. This is essentially the variational principle
summarized in Section 4.8 of [11], with a minor modification.
This principle is expressed in terms of a thermodynamic poten-
tial ¥, that depends on the electric enthalpy density 7, the
displacements, and the flux linkage variables A;. The actual tra-
jectory of the electromechanical system satisfies the variational
identity

1 1
1) (T —Y,p)dt + OWp pedt =0
fo

fo

for all admissible variations of the actual trajectory in elec-
tromechanical configuration space where T is the kinetic energy,
V= JodQ— L Y,CiA2, and SWp e = Woe + Xy [ 6 Ay is
the virtual work of the nonconservative electromechanical loads
acting on the system. In this equation I, is the generalized cur-
rent associated with the variation in the flux linkage 6A;. See
Section 4.8 of [11] for details regarding the electromechanical
virtual work Wz ..

The 7 -Variational Principle

We next introduce the second thermodynamic variational
principle for a linear piezoelectric continua  that is coupled
to an ideal electrical network. This principle is in terms of the
thermodynamic potential ¥, that depends on the internal en-
ergy density %, the mechanical displacements, and the charges
Oy The actual trajectory of the electromechanical systems satis-
fies the variational identity

5] 1
0| (T—Yy)dt+ | OWy yedt =0

fo fo

for all admissible variations of the actual trajectory in elec-
tromechanical configuration space where 7 is the kinetic energy,
Vo = [oUdQ+ % Y CiiQiz, and 0Wy e = OWie + L A8 Oy is
the virtual work of the nonconservative electromechanical loads
acting on the system.

A Prototypical Comparison

We will see that these two thermodynamic variational for-
mulations are equivalent as illustrated in an iconic example. Con-
sider the piezoelectric composite beam depicted in Figure 5. We
analyze this system here to demonstrate the equivalence of the
two variational formulations, and we will then generate the gov-
erning equations of an SOA whose appendages have the geome-
try based on Figure 4. We first apply the thermodynamic varia-
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Capacitor

FIGURE 5: Piezoelectric Composite Beam Coupled to an Ideal
Electrical Network

tional principle expressed in terms of ¥4, the displacements, and
the charge. The internal energy density % is derived in either [7]
or [8], and we see that its approximation for a one dimensional
domain can be used to express ¥4, as

1 2
7/0]/ = /Q?/dv—i- in,

1 1 1
= /Q {2033%1 +d3811D3+ 2[53S3D§} dv+ iQ%.

I o . . 2
Substituting the strain displacement relationship Sj; = —)@%TVZV,
1

the piezoelectric patch surface area A, = (b —a) X w and cross
sectional area A =, X w, and the electric displacement

_%X[aab]()ﬂ) (XI,)CZ’)C3) € top patCh,
b = %X[a’b] (x1) (x1,Xx2,x3) € bottom patch,
otherwise,

1/ 3*w\> , *w\ 43103 X[ap)
T —/Q{z@axg) it (m ) T a
10
+2<A; ab]) ﬁ%3}dv+ 03,
:/L Lo, <82w)2+<82w) Kd3103Xjas)
0 ox? ox? Ap

103

2A2Aﬁ33%ab]}dxl +5= Q%-

The kinetic energy in this example problem is written as

1 (L ow\?

The modified Hamilton’s principle of piezoelectricty in terms of

displacements and charges requires that

)

fo

1
(T -

1
%g/)dl‘-i-/ BW%’,wdt =0
fo

for all admissible variations of the true trajectory in electrome-
chanical configuration space. Following integration by parts and
enforcement of the boundary conditions on the variations in elec-
tromechanical configuration space, we find that we must have

Lo (

)
oxy

w 2?2 22w
) e\ 5a
9% (Kds1Xap)

AP

) Q3) 5deldl‘

g Kd31 Xjap) (0w
7/10 </0 <Ap<ax1> A2AB33Xab>dxl

1
- CQ3> 0Qxdt

+ variational BCs =0

for all admissible variations dw and § Q3. We find that the strong
form of a solution (w, Q3) must satisfy the pair of equations

2w
Pud (azz> o

B /L Kd31X(4.p]
0

Ap

for all (¢,x3) € [0,

82

2w
D PR
(C <8x%)>
92 (Kd31Q37C[a7b]> _0

— 1
1 e (1)

8 1

oo)x

@

[0,L], subject to initial conditions and to

appropriate variational boundary conditions.

We next consider the thermodynamical variational principle
that is expressed in terms of ¥/, the displacements w = w(t, x),
and flux linkage variables A. We write the electric enthalpy den-
sity in the form [7], [

I =

2

]

1 1
~CiST) —es1S1Es — §£§3E32,
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so that

1L (W)’ L Ke31 Xjap) ,0%w
=~ Z0) dn - [ Ay E R gy
€4 2/0 C“(&x%) XI /0 tp ox? i

1L A% 1 s
_5/0 ApES X <t[,) dxi = 5CV2.

The modified Hamilton’s principle of piezoelectricity in terms of
displacements and flux linkage imposes the variational statement
that

t
5[ (T~ V) di+

fo

1]
6W%,ncdl‘ =0
fo

for all admissible variations of the actual trajectory in electrome-
chanical configuration space. After using standard tools from
variational calculus, we find that the equation

L w92 2w
— A — CcE1
/,0 /0 { Pl 5 73 2( ax§>
9% (Ke31Xap)
+ TX% <tpv>}6WdX1dt

L Ke *w LA e, (b—
n / 31X[a,b] 2d p 33(2 a)V
to 0 fp dx tp
+ CV}oVdt+ variational BCs =0

must hold for all admissible variations dw and A of the actual
trajectory in electromechanical configuration space. A strong so-
lution (w, 4) of the governing equations must satisfy

2 2 2 K
pmAa—W-i- J <CE d°w ) < e31%ah)v_0’ (3)

o2 o2 \ 1M 92
LK, 2w

/Ma ( Aesb=a)y | oy —o, @)
0 Ip 8x1

for all (¢,x3) € [0,00) x [0,L], subject to initial conditions and to
appropriate variational boundary conditions.

Substituting the constitutive relationship Cﬁ = ClDl +d31e3;
and a bit of manipulation shows that Equations 1, 2 are equiva-
lent to Equations 3,4. For example, starting with the equation of
motion derived from the variational formulation that is expressed
in terms of ¥, the displacements, and the flux linkage, we ob-

tain

*w 92 *w
OZPmAW+8 2 <(C11 +ds1e3n)l 8x1>

2 /K
_82( e31%[a7b]>v7
oxg tp

w92 ’w
=P+ 32<C” 92>
82 e31Xla
+ Tx% (d31€31 .//x%dXZd)Qﬁ - //)C3d)C2dX3 tl,[MV> s

L0 32<Da2>
Ao T oa \ Mo

—ds ﬁ // (31511 + €33E3) x3dxadxs,
X

Pw  J? < o

82
:pmAWJr(9 2 nl F) %>d31(9x%/ D3x3dxydxs,

2 2 2 2
:pmAal+i (CDIM) + = 0 (d31KQ xla, b])

o2 "o \"Max2) " ax2

These computations have shown that Equation 3 is equivalent to
Equation 1. A similar analysis shows that Equation 4 is equiva-
lent to Equation 2.

PIEZOELECTRIC SOA MODEL

We now use the approaches outlined in this paper to con-
struct an approximation of the piezoelectrically actuated SOA
depicted in Figure 4. Each appendage in Figure 4 has the ge-
ometry as depicted in Figure 5. The total kinetic energy for a
base-driven primary structure is written in the form

1 awi .\’
T=5mp(p—2) +E{ /0 ( +av:—z'> dx;
+am Lo (t,L;) — 2

M\t '

with x,, the displacement of the primary structure, w; := w;(z,x;)
the displacement along appendage i at the location x;, m; the top
mass of the i/ appendage, L; the length of the " appendage, p;
the mass density of the i’ appendage, and A; the cross sectional
area of the i"" appendage. We construct Galerkin approximations
of the transverse displacement of the i appendage in the form

wi(t,x;) = Y3y wie(x)win(t) = ] (x)Wi(t) = W] (0)®(x;)
for i = 1,...,n;, with the vectors ¥; and W; defined as ¥, :=
{‘PU ‘P,-_yni}T and W; := {W,l W,-_,ni}T. The contribution

of the distributed mass of the i’ appendage to the kinetic energy

Copyright © 2017 ASME

d'95089-/ | 02219P-890BZ L1B00N/SSZ L 9ZF/890VZ L L8OOA/9ZZ8S/LL0Z31D-0 L3AIAPd-sBupesdoid/310-0 1 3QI/B10"dwse uoyos|jodfe

USY0) BSEI; JP!

ues eluIojieD 4O Aussenun Ag mydiuiiNgBPHBALEMOSDIOW, | 040dzd T1dqIuSOVUNGZAMA05SObH L L HDIBYaAZOIyNgeba 1 4:vVYYYYIEZEdEr ZIA



is then expressed as

1 i v 5 irl . . T vi
= 5/0 piAi ((xp _Z) +Wl ‘I’l) ((_xp _Z> +\Pl WI) dxl_’

L[k : 2
=3 /0 piAidx; (X — 2)
—_———
i

L,‘ )
+2 /0 PiAYPT dxi W () — 2)
N—————

MY,
. T Li T .
+ Wi /0 piA,'\Pi‘Pi dx;W; ).
—_———
M ii
This expression then reduces to
1 . , .
T, = 5 (j/l (xp — Z)2 +2//l~TpW,' (Xp *Z.) JrW,T//i,’W,') .

Contribution of the tip masses of each appendage to the kinetic
energy is calculated similarly. We have

T, = 2m,<( — )W (L ))((x,,—z')+'1'f(L,~)W,->,

—2 +2m¥] (L)W (4, —2)
\—v—"

T
m[-p

W] (L) (L) Wi) ;
N— ———

mij
1
= 2 (ml (

We sum the above contributions to obtain the total kinetic energy

—2)2+2m! Wi (%) z')—l—W,-Tm;,-W,-).

1

N
T gl =+ Y3 (/Hml( p

i

F2M iy +mip) W] (tp—2)+ W (M i+ m,-,~)W> ,

Mi, M;;
1 . 5
*Emp(x )

yu 2+ 2ME W (s, — 2) + W' MW,
22 ,(XP—Z) + ip 1(XP_Z)+ i,
i=1

1 . .

EMpp + Z (2MT Z) +WTMiiWi> 9

where M,,, :=m, + YN | M;. The total kinetic energy can be ex-
pressed in the quadratic form. We have,

The electric enthalpy density for each appendage has the form
I = %C,-S,2 —e;S;E; — %s,Eiz where E; = E;(x;) is the electric

field in the z; direction and S; = —z; % Vg’ is the axial strain given

by the kinematics of Bernoulli- Euler beam theory. The linear
piezoelectric constitutive law in the i/ appendage of the SOA is

written as
L _ |G—ei| JSi
D; - e & E;

where C; = ClEl‘i is the stiffness coefficient, e; = €31 ; is the piezo-
electric coefficient, S; = S 11,; is the axial strain in the x; direction,
T; =111, is the axial stress in the x; direction, E; = Ej3 ; is the elec-
tric field in the z; direction, and D; = D3 ; is the electric displace-
ment in the z; direction. We can now write the electric enthalpy
density in the i’* appendage as ¥»; = fol‘ " A;dx;. Since the
divergence of the electric field is zero, it is possible to express
electric field in the form E; = —V¢; or E; := E3; = _7 As-
suming a linear variation in the potential ¢; across the thickness
of the piezoelectric patch in appendage i, we obtain

*‘;% (xi,¥i,2i) € top patch,
Ei(xi,yi,2i) = t,le (xi,¥i,2i) € bottom patch,
0 otherwise.

Substituting the expression for strain and the electric field, the
electric enthalpy for the i/ appendage has the form

1 (L %w;\ 2
'V%ﬂi :E/() (//C,Z%dy,dz,) (aXZZl) dx,-
L; 82wi
+/0 (//eiZiEidyidZi) Txizdx
1 (L 2
5y / / &E;dydz; |dx;,
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or
1 (L %w; \ 2 Li e;K; 0%w;
"//,.:,/ crl =— d.,/# o —Ldx:Vi(t
Hi 2 Jo ll< a)qz) Xi 0 tp,i X[dubl] axlz Xi l()
_leiZA,-(b,»—a,') 2
2 2. v
pit

with (Cili) (x;) := [ [ Cizjdyidz; and Ky, := [ [, zidyidz; for the
top patch, kg, := [ [5, zidyidz; for the bottom patch, and k; :=

Kri— KB,

We substitute the Galerkin approximations of the
transverse displacement of the " appendage, wi(t,x;) =
Yol Wik (xi)Wi(t) = W'W; = WI'W,, into the expression for the

exlectric enthalpy. We have,

1 L; "
ﬂj/z%’i = EWT/() C,'Ii‘P;/\Pi’dei W;

Kii
Li K;e; " 1 8,>2A,<(b,-fa,-)
7/ — Xap) Vi AWV — 2 Viz'
0 l‘p’,‘ 2 tp,i
BT D;

i

The expression for the electric enthalpy for the i appendage
reduces to

1 1
Vi = EW,TKiiWi ~BIW,V; — EDiViz'

The total electric enthalpy of the piezoelectrically actuated SOA
attached to a primary structure has the form

N

1 1 1
V=Y, <2WiTKiiWi —B/ WV, — ZDiVi2> + 5k (xp—2)*
i=1

The virtual work of the external applied mechanical and electri-
cal loads is given by

N N 0
) Ak
SWoe = F8 (x, —2) + k; i 0N — k; 2R76’1k + W vises

where F is the force applied to the primary structure, i is the cur-
rent applied across the k" piezoelectric patch, Ry is the resistance
of the resistor in the shunt circuit attached to the k* appendage.
In order to consider the work done by the damping in the sys-
tem 5Wm.,w-_u., we define the Rayleigh’s dissipation function as

F = 14" Cq with
ccC
q:{W1W2...WN(xp—z)}T, C=|:CTCP:|.
p “pr

The virtual work done by the damping in the system can be calcu-
lated using the relation 6 Wy visci = Pyisc0q With D5 = —‘3—?
Hence, the expression for the virtual work done by the damping

in the system, Wi yisc, is
6Wnc,visc = —5chq

In order to simplify the expressions of the kinetic energy, elec-
tric enthalpy and virtual work done, we define new vectors that
stack the the unknown displacements, currents, voltages and flux
linkages, and mass matrices in

W= {W, .. wy}" Vi={vi .},

iZ:{il...iN}T, :Z{A.]...A.N}T,
Mp = {Mlp MNp}7
and define associated block matrices as
M:= diag(M,M>,...,My),
B :diag(Bl,Bz,... BN),
K:= diag(KU,Kzz,...,KNN),
D :=diag(D1,D3,...,Dy),

The expressions for kinetic energy, electric enthalpy, and virtual
work done by nonconservative electromechanical loads on the
system will consequently be written as

T:%(MPP(xp_z)z+2(xp_Z)MZW+WTMW)’

Vop = %(WTKW—ZVTBTW—VTDV—H(,, (xp—2)%),

SWpe =F58(x,—2)+i'6 —2'7¢5 —8q"Cq,
=F§(x,—2)+i"8 =27 746 —6(x,—2)Cplip—2)

—SWICW — 6§ (x, —z) CTW - W' C (x, — 7).

Finally, we can apply Hamilton’s principle for piezoelectric con-
tinua coupled to ideal electrical networks. We must have

5 t
6/1 (T—Wy}f,)dw/lswﬂmdt:o
1) o
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for all admissible variations of the actual trajectory in electrome-
chanical configuration space. The variational statement becomes

/IO” {M,,,, (b —2) 8 (£ — 2) + MIWS (2, — 2)
+ (k) — ) MISW + 5WTMW}dt
_ /t " {SWTKW — §VTBTW — 5W'BV — 8V/DV
0
-8 1€ +k, (xp—z)5(xp—z)}dt

ot
+/ ‘{Fa(xp—z>—z'7§5 — SWTCW - 8 (x, —2) CTW
Jiy

~SWIC(xp—2)—8(xp—2)Cp (i —2)+i'8 }dt:O

for all admissible variations. After performing standard steps
from variational calculus, we find that

/,Il {5 (xp—2) <Mp,, (%) —2) — MW —Cp (5, — 2) — CTW/
0
_kp(xp_z)‘f'F)
+ 8w’ (—Mp (§p—2) =MW —CW — C,, (x, —2) — KW+ BV)
+8 T(—BTW—Dv—zc' +i—<€\'/> }dt
+ variational BCs = 0-

The above expression must hold for all admissible variations
0x,, W, and 62 in the electromechanical configuration space.
Hence, we can conclude that the strong form the solutions must
satisfy the governing equations

M M W ccC W KO0 W
T P . Lot AT P . .ot AT
My, Mpp| | Xp —2 C, Cp| |Xp—2 0" kp| |xp—2z

or

i e Lot Lo o) -l
MT Mp, | | %, Cl Cp| %y 0" k,| | xp 0
B Mpz+Cpz
T F+Mppi+Cpztkpz]’

as well as the equality
B'TW+DV+2¢ —i+%V=0.

Figure 6 depicts the magnitude of the frequency response func-

-40
— Host Structure
601 —— With DVA
— With SOA; N=55
— With SOA; N=155
g -0 ]
[0}
S -100+
c
o
S 120} Yk . -
-140
-160 L L L L L
30 32 34 36 38 40 42

Frequency (rad/sec)

FIGURE 6: Frequency Response Function from External Force
Input to Displacement of the Primary Mass

tion from the external force input f to the primary displacement
x, when C = 6.9¢10 Pa, p,, = 2.7e3kg/m?, L =0.5m, w =
0.025m, t =0.003m, a=0.25L, b = 0.75L, t, = 0.0005 m,
e31 = —104C/ m?, € = 13.3 nF/m, m, = 5000 kg, K,, =
6.3665¢ + 06 N/m, § = Oohm’l, % =0, i=0A. The tip
masses of the appendages of SOA were chosen, from m; =
0.03424 kg to 0.07313 kg, such that the first resonant frequency
of all the appendages are evenly distributed around the resonant
frequency of the host structure.

ENERGY EXTRACTION VIA SWITCHING CONTROL

In principle the piezoelectric composite SOA can be used
both for passive and active vibration attenuation. In this section
we discuss a strategy for energy extraction using the SOA based
on a nonlinear switching controller. To illustrate the essentials
of the approach, we consider only a single, base-driven SOA ap-
pendage in this brief paper. Consider the system depicted in Fig-
ure 5, but modified so that the base of the appendage at the left
is driven vertically by an input motion z(¢) in the x3 direction,
and with the addition of a single resistor R in parallel with the
capacitor C. The application of the thermodynamic variational
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principles in this case requires that a solution (ws,V) satisfies
the pair of equations

%w 92 2w
mA | == +7 |+ — [ CEI=— ),
p (atz +Z>+8x% ( 1 8x%>

2 /K
_J° 1 labl v\ _
ox? tp

/Li Ke3i Xjap) ((9*w i
o dt tp 8x% !

Ayes, (b— .V
4| = 33(2 a>+C V42— =0,
2 R

for all (¢,x1) € [0,00) x [0, L], subject to appropriate variational
boundary conditions and initial conditions. With the introduc-
tion of the Galerkin approximation w(t,x1) = Y.; N;(x1)w;(t), we
obtain equations of the form

M;ijw;+Cipwj+ Kijw; = BiV — BZ o)

LV
B,.Twi(t)+(c,,+C)v+2§ =0 (6)

with the mass matrix M;; 1= fOmeANj(xl)N,-(xl)dxl, the stiff-
ness matrix K;j := [ CEI % (x1)N;(x1)dx1, the control input

K :
vector B; := [y MN{’ (x1)dx1, the generalized force P, :=
P

foL PmAN;(x1)dx;, and the effective capacitance of the appendage
C. = Areis(b-a)

b T

Let us focus on Equation 6. This equation can be interpreted
as the sum of currents in the circuit, where i, := B,w!- + CfV is the
current flowing through piezoelectric, and i, := 2CV + £V is the
current flowing through the shunt circuit. As the piezoelectric
beam vibrates, the direction of current, i, changes polarity. In
order for the capacitor to be charged, the direction of current in
the shunt circuit should remain the same. Hence a switching
circuit, which has two states, is added. If the voltage across the
circuit is denoted by V, we have V = V in state 0, while in state
1,itis V = —V. The governing equations for both the switching
states can be expressed as

Wj:—M[;lKijo—Mi;lcijo:tMileiV—Mi;lpi'z', (7)

go__ 2 5 B] Wi

T TRC,+0) TGty

or

N 2 BT,

V= 1% AL 8
R, 0" T ¢, 40 ®)

State 1

State 0
C R|
rigid

Massless,
\
t W

Base motion L

2(t)

FIGURE 7: The Switch Design and Associated Circuits

A switch is introduced as depicted in Figure 7. We choose
a nonlinear switching strategy that is defined in terms of the
switching variable s so that the right hand side in Equation 8 re-
mains positive during both the switching stages. We choose s =0
when Bl-Tw,- + 2% < 0 and s = 1 otherwise. With this nonlinear
switching strategy, the governing equations become

Wi = =M Kijw; — M Cipwj + (—1)°M;;' BV — M;;' Pz, (9)
2 o (=1)Blw;

V:_R(Cp—i-C)V_ (C,+C) (10)

Equations 9 and 10 were simulated in Matlab when C =
6.9¢10 Pa, p, = 2.7e3kg/m?, L=0.1m, w =00l m, t =
0002ma=0,b=1L, t, =0001m, Cp=10e—-6F, z =
0.01s5in(100¢) m, e3; = —10.4 C/ m* and R = 10 kohm. Figure 8
represents the variation of voltage across the capacitor when the
switching strategy is not implemented. It is important to note that
the voltage is of the order of 107> V and has the same period as
the forcing frequency. Figure 9 depicts the time variation of volt-
age across the shunt circuit’s capacitor. It is evident form the fig-
ure that the voltage across the capacitor varies as expected from
an RC circuit when the switching strategy is implemented. The
effectiveness of passive linear modeling and nonlinear switching
to channel energy into the SOA will be discussed at the confer-
ence.
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