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ABSTRACT
It has been shown theoretically that by prescribing the

mass and stiffness distributions of a subordinate oscillator ar-
ray (SOA) that is attached to a host structure, significant vibra-
tion attenuation of a host can be obtained over a finite frequency
range. This case stands in stark contrast to classical vibration
isolator designs for two degree of freedom systems that achieve
exact vibration cancellation at a single isolated frequency. De-
spite the attractiveness of SOAs for the design of broader band
vibration suppression, the theoretically desired result can deteri-
orate rapidly due to small fabrication imperfections in the SOA.
This paper introduces and compares variational thermodynamic
formulations of composite piezoelectric SOA that are designed
to be adjustable in real-time to ameliorate the effects of disorder
due to fabrication in a SOA.

INTRODUCTION
Previous work by the authors and other researchers in

[14, 6, 1, 2] have studied vibration attenuation methods for a pri-
mary structure that are based on attaching to it an array of sub-
structures or appendages. An iconic example of such a finite

∗Address all correspondence to this author.

dimensional, multi-degree of freedom system is depicted in Fig-
ure 1. Systems of this type have been referred to as host struc-
tures equipped with subordinate oscillators arrays, or SOAs. In
effect, the strategy of such an approach is to design the physi-
cal properties of the attached structures to rapidly transfer vibra-
tional energy from the host to the SOA. It has been shown that a
judicious choice of the mass or stiffness distributions of the SOA
can result in vibration attenuation in the host that is characterized
by a relatively flat frequency response over a range of excitation
frequencies. Such an example response is depicted in Figure 2
from [14, 16]. It is perhaps suprising that this performance can
be achieved, in principle, with SOAs that have a total mass that
is relatively small compared to the mass of the host structure.
Unfortunately, analytic predictions of vibration attenuation fea-
turing such a relatively flat host frequency response in Figure 2
can be quite sensitive to perturbations in the structural properties
of the host or SOA. Figure 3 illustrates the effect of introducing
disorder on the frequency response function of the host.

One of the implications of these observations is that the
structural properties of the host and SOA must be known pre-
cisely to achieve theoretical assurances of the performance in
practice. Even if the structural properties of the host are known
exactly, the fabrication of SOAs must conform closely to design
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that the total attachment mass required to produce such a bandpass response is given by
Âmn/mp ⇡ D2/3.5. For the discussion that follows, errors will be introduced to the mass, stiff-
ness and damping distributions of the subordinate set to represent disorder due fabrication
variation.

3 Simulation of the Effect of Fabrication Disorder
Numerical simulation of the performance of such systems that include the effect of fabrication
tolerances indicate that small errors in geometric dimensions have a profound effect on the
degree to which the oscillator array alters the system response. Evaluation of Eq. 1 is used to
illustrate the effects of introducing prescribed errors in the property distributions of the attached
resonators (mass mn, stiffness kn, and resonator quality factor Qn =

p
mnkn/cn). The prescribed

errors are specified relative to the as-designed mass, stiffness, and quality factor values.

Figure 3 demonstrates the effect of increasing disorder on system response. This example
is the impulse response of a primary structure with a 25 element array designed to result
in a 20% bandpass response. The discorded property distributions are specified by adding
normally distributed random values of specified standard deviations to the original ’as-designed’
distributions.

The four examples shown in Fig. 2 indicate increasing ripple across the band with increasing
disorder levels. This unwanted deviation becomes apparent at error levels of approximately one
part in one thousand.

Any of the fabrication processes under consideration for producing oscillator arrays, such as
laser cutting, water jet, or traditional machining have fabrication tolerances no better than 0.002
inches (0.05 mm). This is problematic, particularly as size scales shrink for higher frequencies
or low mass systems. For example, an oscillator array designed to filter a 10kg, 1000Hz system
would require individual elements with mean length of less than an inch,a mean width of less
than a quarter inch, and thickness of approximately 0.025 inches. A device of this size will
exhibit undesirable response characteristics regardless of the manufacturing method used.

Figure 1: N + 1 degree of freedom model of a mechanical system with N subordinate ele-
ments attached to the primary resonator. Each element has a distinct mass mn, stiffness kn,
and damping cn. The ranges of subordinate element properties are specified by prescribed
distributions.

3

FIGURE 1: A host structure with a subordinate oscillator ar-
ray (SOA): a finite dimensional, multi-degree of freedom system
from [14, 16].
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Figure 2: The array of attachments can be designed to make the response of the primary
element behave as a bandpass
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Figure 3: Performance degradation as errors in the property distributions increase from one
part in 104 (where bandpass performance is unaffected) to 10% (where bandpass response is
no longer apparent).

One parameter of importance to the performance of such systems is the modal overlap, defined
as the width of a resonance peak of a single element of the array over the separation of
adjacent peaks. Mathematically this is given by

h =
1

QnD

r
an

gn
(4)

While it has been predicted that a modal overlap, h < 2 will cause significant performance
degradation, Fig. 4 details the relationship with disorder across many values of modal overlap,
h . This is generated by taking the in-band difference between a zero-disorder response and the
response of a statistically randomized error allocation in the frequency distribution. Of interest
is the fact that the system shows a linear relationship between disorder and RMS difference
at low levels of disorder when h � 2. In this regime, the system will perform at or very close
to the ’as-designed’ response. In the second regime, the RMS difference is insensitive to
increasing disorder and the system begins to exhibit the visible response degradation shown
in Fig. 3. This transition also corresponds to the same one part in one-thousand threshold
discussed earlier. Beyond this region there is another region that exhibits the linear one-to-one
relationship between disorder and RMS difference of the transfer functions. In this region the
SOA is considered out of its performance range and inoperable. It is also worth noting, that
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FIGURE 2: The distribution of mass and stiffness properties are
designed to obtain vibration suppression over a finite bandwidth
from [14, 16].
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FIGURE 3: The effects of disorder or fabrication errors induce a
deterioration of analytic predictions of vibration attenuation from
[14, 16].

specifications. Therefore, it would be highly advantageous to
be able construct an SOA that is an active system, one that can
change its structural properties to account for introduced fabrica-
tion errors.

In this paper we study detailed modeling of piezoelectrically

Primary
Structure

Bimorph
Beam

FIGURE 4: The host structure with piezoelectrically actuated
SOAs: a distributed parameter system

actuated SOAs as depicted in Figure 4. We begin by review-
ing variational formulations expressed in terms of the electric
enthalpy density H for linear piezostructural systems that are
coupled to an ideal electrical network. We show how such a for-
mulation can be understood as a generalization of the displace-
ment and flux linkage formulation for electromechanical systems
made popular following references such as [5], or in [13,18,17].
We introduce a novel complementary variational principle that is
expressed in terms of the internal energy density U , displace-
ment, and charge. The complementary variational principle can
be viewed as a generalization of the displacment and charge for-
mulation in [5] for finite dimensional electromechanical systems
to piezoelectric continua that are connected to an ideal electrical
network.

THERMODYNAMIC VARIATIONAL PRINCIPLES
Methods for constructing models of linear and nonlinear

piezoelectric composites have a long history and different for-
mulations have appeared in the literature over the years. Early
efforts such as in [13] are restricted to consideration of linear
piezoelectric continua, while more recent efforts such as in [18]
or [17] summarize the relevant theory for nonlinear piezoelec-
tric systems. Roughly speaking, the approaches in these rep-
resentative studies, and similar ones such as in [17], introduce
a variational principle that modifies Hamilton’s principle from
classical mechanics with one that is cast in terms of the electric
enthalpy density H . These references do provide an electric en-
thalpy density based variational principle for piezoelectric con-
tinua coupled to an ideal electrical network.

A related but different viewpoint follows from the early ap-
proaches summarized in [5]. The approach in [5] is significant
in that it formulates quite general methods for deriving the equa-
tions of motion of coupled, finite dimensional electromechanical
systems. From first principles, it is shown that electromechan-
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ical systems that evolve in a finite dimensional state space can
be modeled using complementary charge or voltage variational
methods. While [5] focuses on general finite dimensional elec-
tromechanical systems, it also includes a chapter on distributed
parameter systems, i.e., ones that have an infinite dimensional
state space. Still, reference [5] does not discuss a variational
formulation for a continuum of piezoelectric material coupled to
an ideal electrical network. The culmination of the approaches
in [5] yields Lagrange’s equations for finite dimensional elec-
tromechanical systems in terms of the displacement and charge
formulation, or the displacment and flux linkage formulation.

These two formulations are also summarized in [11] in Sec-
tion 3.4. [5, 11] Reference [11] goes still further, however, and
introduces a modification of Hamilton’s principle to linear piezo-
electric continua in Chapter 4.8. that is cast in terms of the dis-
placement and flux linkage. It is noted in [11], however, that
the variational problem is in fact formulated in terms of the elec-
tric enthalpy density. Hence, the variational approach in [11] is
identical to that in [13, 18, 17]. With a minor modification, the
approach derived in [11] is applicable to piezoelectric continua
coupled to ideal electrical networks.

Still, other formulations such as in [8] derive finite dimen-
sional governing equations in Chapter 5 for linear piezoelectric
continua in terms of the internal energy U . The relationship of
the equations of motion generated by approximations of the in-
ternal energy such as in Chapter 5 of [8] to the variational meth-
ods [13], [18], [17], or [11] cast in terms of the electric enthalpy
density H is not addressed in any of these references.

In the next few sections we will introduce a variational for-
mulation based the internal energy U of a linear piezoelectric
that is coupled to an ideal electrical network. It can be under-
stood as a generalization of the complementary variational state-
ment in the sense of [5, 11] that is cast in terms of displacement
and charge for finite dimensional electromechanical systems.

When we introduce the complementary thermodynamic
variational principles for linear piezoelectricity, they will be
based on modifications of the classical form of Hamilton’s prin-
ciple for nonconservative systems. Recall that the classical form
of Hamilton’s principle [10] states that the actual trajectory of a
mechanical system satisfies the variational identity

δ
∫ t1

t0
(T −V )dt +

∫ t1

t0
δWncdt = 0

for all admissible variations of the actual trajectory in mechanical
configuration space. In this equation T is the kinetic energy, V
is the mechanical potential energy and δWnc is the virtual work
performed by any nonconservative mechanical forces acting on
the mechanical system.

The H -Variational Principle
We now consider the first thermodynamic variational prin-

ciple for a linear piezoelectric continua Ω that is coupled to an
ideal electrical network. It is expressed in terms of the electric
enthalpy density H . This is essentially the variational principle
summarized in Section 4.8 of [11], with a minor modification.
This principle is expressed in terms of a thermodynamic poten-
tial VH that depends on the electric enthalpy density H , the
displacements, and the flux linkage variables λi. The actual tra-
jectory of the electromechanical system satisfies the variational
identity

δ
∫ t1

t0
(T −VH )dt +

∫ t1

t0
δWH ,ncdt = 0

for all admissible variations of the actual trajectory in elec-
tromechanical configuration space where T is the kinetic energy,
VH :=

∫
Ω H dΩ− 1

2 ∑i Ciλ̇ 2
i , and δWH ,nc = δWnc +∑k Ikδλk is

the virtual work of the nonconservative electromechanical loads
acting on the system. In this equation Ik is the generalized cur-
rent associated with the variation in the flux linkage δλk. See
Section 4.8 of [11] for details regarding the electromechanical
virtual work δWH ,nc.

The U -Variational Principle
We next introduce the second thermodynamic variational

principle for a linear piezoelectric continua Ω that is coupled
to an ideal electrical network. This principle is in terms of the
thermodynamic potential VU that depends on the internal en-
ergy density U , the mechanical displacements, and the charges
Qk. The actual trajectory of the electromechanical systems satis-
fies the variational identity

δ
∫ t1

t0
(T −VU )dt +

∫ t1

t0
δWU ,ncdt = 0

for all admissible variations of the actual trajectory in elec-
tromechanical configuration space where T is the kinetic energy,
VU :=

∫
Ω U dΩ+ 1

2 ∑i
1
Ci

Q2
i , and δWU ,nc = δWnc +∑k λkδQk is

the virtual work of the nonconservative electromechanical loads
acting on the system.

A Prototypical Comparison
We will see that these two thermodynamic variational for-

mulations are equivalent as illustrated in an iconic example. Con-
sider the piezoelectric composite beam depicted in Figure 5. We
analyze this system here to demonstrate the equivalence of the
two variational formulations, and we will then generate the gov-
erning equations of an SOA whose appendages have the geome-
try based on Figure 4. We first apply the thermodynamic varia-
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FIGURE 5: Piezoelectric Composite Beam Coupled to an Ideal
Electrical Network

tional principle expressed in terms of VU , the displacements, and
the charge. The internal energy density U is derived in either [7]
or [8], and we see that its approximation for a one dimensional
domain can be used to express VU as

VU =
∫

Ω
U dv+

1
2C

Q2
3

=
∫

Ω

{
1
2

CD
11S2

11 +d31S11D3 +
1
2

β S
33D2

3

}
dv+

1
2C

Q2
3.

Substituting the strain displacement relationship S11 = −x3
∂ 2w
∂x2

1
,

the piezoelectric patch surface area Ap = (b− a)×w and cross
sectional area A = tp×w, and the electric displacement

D3 =





−Q3
Ap

χ[a,b](x1) (x1,x2,x3) ∈ top patch,
Q3
Ap

χ[a,b](x1) (x1,x2,x3) ∈ bottom patch,
0 otherwise,

we see that

VU =
∫

Ω

{
1
2

(
x3

∂ 2w
∂x2

1

)2

CD
11 +

(
x3

∂ 2w
∂x2

1

)
d31Q3χ[a,b]

Ap

+
1
2

(
Q3

Ap
χ[a,b]

)2

β S
33

}
dv+

1
2C

Q2
3,

=
∫ L

0

{
1
2

CD
11I
(

∂ 2w
∂x2

1

)2

+

(
∂ 2w
∂x2

1

)
Kd31Q3χ[a,b]

Ap

+
1
2

Q2
3

A2
p

Aβ S
33χ[a,b]

}
dx1 +

1
2C

Q2
3.

The kinetic energy in this example problem is written as

T =
1
2

∫ L

0
ρmA

(
∂w
∂ t

)2

dx1.

The modified Hamilton’s principle of piezoelectricty in terms of
displacements and charges requires that

δ
∫ t1

t0
(T −VU )dt +

∫ t1

t0
δWU ,ncdt = 0

for all admissible variations of the true trajectory in electrome-
chanical configuration space. Following integration by parts and
enforcement of the boundary conditions on the variations in elec-
tromechanical configuration space, we find that we must have

∫ t1

t0

∫ L

0

(
−ρmA

(
∂ 2w
∂ t2

)
− ∂ 2

∂x2
1

(
CD

11I
(

∂ 2w
∂x2

1

))

− ∂ 2

∂x2
1

(
Kd31χ[a,b]

Ap

)
Q3

)
δwdx1dt

−
∫ t1

t0

(∫ L

0

(
Kd31χ[a,b]

Ap

(
∂ 2w
∂x2

1

)
− Q3

A2
p

Aβ S
33χ[a,b]

)
dx1

− 1
C

Q3

)
δQ3dt

+ variational BCs = 0

for all admissible variations δw and δQ3. We find that the strong
form of a solution (w,Q3) must satisfy the pair of equations

ρmA
(

∂ 2w
∂ t2

)
+

∂ 2

∂x2
1

(
CD

11I
(

∂ 2w
∂x2

1

))

+
∂ 2

∂x2
1

(
Kd31Q3χ[a,b]

Ap

)
= 0, (1)

−
∫ L

0

Kd31χ[a,b]

Ap

(
∂ 2w
∂x2

1

)
dx1 +

Q3

A2
p

Aβ S
33(b−a)+

1
C

Q3 = 0,

(2)

for all (t,x3) ∈ [0,∞)× [0,L], subject to initial conditions and to
appropriate variational boundary conditions.

We next consider the thermodynamical variational principle
that is expressed in terms of VH , the displacements w = w(t,x),
and flux linkage variables λ . We write the electric enthalpy den-
sity in the form [7], [13]

H :=
1
2

CE
11S2

11− e31S11E3−
1
2

εS
33E2

3 ,
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so that

VH =
1
2

∫ L

0
CE

11

(
∂ 2w
∂x2

1

)2

dx1−
∫ L

0

Ke31χ[a,b]

tp
V

∂ 2w
∂x2

1
dx1

− 1
2

∫ L

0
ApεS

33χ[a,b]

(
V
tp

)2

dx1−
1
2

CV 2.

The modified Hamilton’s principle of piezoelectricity in terms of
displacements and flux linkage imposes the variational statement
that

δ
∫ t1

t0
(T −VH )dt +

∫ t1

t0
δWH ,ncdt = 0

for all admissible variations of the actual trajectory in electrome-
chanical configuration space. After using standard tools from
variational calculus, we find that the equation

∫ t1

t0

∫ L

0

{
−ρmA

∂ 2w
∂ t2 −

∂ 2

∂x2
1

(
CE

11I
∂ 2w
∂x2

1

)

+
∂ 2

∂x2
1

(
Ke31χ[a,b]

tp
V
)}

δwdx1dt

+
∫ t1

t0

{∫ L

0

Ke31χ[a,b]

tp

∂ 2w
∂x2

1
dx1 +

ApεS
33(b−a)

t2
p

V

+ CV}δV dt + variational BCs = 0

must hold for all admissible variations δw and δλ of the actual
trajectory in electromechanical configuration space. A strong so-
lution (w,λ ) of the governing equations must satisfy

ρmA
∂ 2w
∂ t2 +

∂ 2

∂x2
1

(
CE

11I
∂ 2w
∂x2

1

)
− ∂ 2

∂x2
1

(
Ke31χ[a,b]

tp

)
V = 0, (3)

∫ L

0

Ke31χ[a,b]

tp

∂ 2w
∂x2

1
dx1 +

AeεS
33(b−a)

t2
p

V +CV = 0, (4)

for all (t,x3) ∈ [0,∞)× [0,L], subject to initial conditions and to
appropriate variational boundary conditions.

Substituting the constitutive relationship CE
11 =CD

11 +d31e31
and a bit of manipulation shows that Equations 1, 2 are equiva-
lent to Equations 3,4. For example, starting with the equation of
motion derived from the variational formulation that is expressed
in terms of VH , the displacements, and the flux linkage, we ob-

tain

0 = ρmA
∂ 2w
∂ t2 +

∂ 2

∂x2
1

(
(CD

11 +d31e31)I
∂ 2w
∂x2

1

)

− ∂ 2

∂x2
1

(
Ke31χ[a,b]

tp

)
V,

= ρmA
∂ 2w
∂ t2 +

∂ 2

∂x2
1

(
CD

11I
∂ 2w
∂x2

1

)

+
∂ 2

∂x2
1

(
d31e31

∫∫
x2

3dx2dx3
∂ 2w
∂x2

1
−
∫∫

x3dx2dx3
e31χ[a,b]

tp
V
)
,

= ρmA
∂ 2w
∂ t2 +

∂ 2

∂x2
1

(
CD

11I
∂ 2w
∂x2

1

)

−d31
∂ 2

∂x2
1

∫∫
(e31S11 + ε33E3)x3dx2dx3,

= ρmA
∂ 2w
∂ t2 +

∂ 2

∂x2
1

(
CD

11I
∂ 2w
∂x2

1

)
−d31

∂ 2

∂x2
1

∫∫
D3x3dx2dx3,

= ρmA
∂ 2w
∂ t2 +

∂ 2

∂x2
1

(
CD

11I
∂ 2w
∂x2

1

)
+

∂ 2

∂x2
1

(
d31K

Q3

Ap
χ[a,b]

)
.

These computations have shown that Equation 3 is equivalent to
Equation 1. A similar analysis shows that Equation 4 is equiva-
lent to Equation 2.

PIEZOELECTRIC SOA MODEL
We now use the approaches outlined in this paper to con-

struct an approximation of the piezoelectrically actuated SOA
depicted in Figure 4. Each appendage in Figure 4 has the ge-
ometry as depicted in Figure 5. The total kinetic energy for a
base-driven primary structure is written in the form

T =
1
2

mp (ẋp− ż)2 +
N

∑
i=1

{
1
2

∫ Li

0
ρiAi

(
ẋp +

∂wi

∂ t
− ż
)2

dxi

+
1
2

mi

(
ẋp +

∂wi

∂ t
(t,Li)− ż

)2}
.

with xp the displacement of the primary structure, wi := wi(t,xi)
the displacement along appendage i at the location xi, mi the top
mass of the ith appendage, Li the length of the ith appendage, ρi
the mass density of the ith appendage, and Ai the cross sectional
area of the ith appendage. We construct Galerkin approximations
of the transverse displacement of the ith appendage in the form
wi(t,xi) = ∑ni

k=1 ψi,k(xi)wi,k(t) = ΨΨΨT
i (xi)WWW i(t) = WWW T

i (t)ΨΨΨi(xi)
for i = 1, . . . ,ni, with the vectors ΨΨΨi and WWW i defined as ΨΨΨi :={

Ψi,1 · · · Ψi,ni

}T and WWW i :=
{

Wi,1 · · · Wi,ni

}T . The contribution
of the distributed mass of the ith appendage to the kinetic energy
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is then expressed as

Ti :=
1
2

∫ Li

0
ρiAi

(
(ẋp− ż)+ẆWW T

i ΨΨΨi

)(
(ẋp− ż)+ΨΨΨT

i ẆWW i
)

dxi,

=
1
2

(∫ Li

0
ρiAidxi

︸ ︷︷ ︸
Mi

(ẋp− ż)2 +2
∫ Li

0
ρiAiΨΨΨT

i dxi
︸ ︷︷ ︸

M T
ip

ẆWW i (ẋp− ż)

+ẆWW T
i

∫ Li

0
ρiAiΨΨΨiΨΨΨT

i dxi
︸ ︷︷ ︸

M ii

ẆWW i

)
.

This expression then reduces to

Ti =
1
2

(
Mi (ẋp− ż)2 +2M T

ipẆWW i (ẋp− ż)+ẆWW T
i M iiẆWW i

)
.

Contribution of the tip masses of each appendage to the kinetic
energy is calculated similarly. We have

Ti =
1
2

mi

(
(ẋp− ż)+ẆWW T

i ΨΨΨi(Li)

)(
(ẋp− ż)+ΨΨΨT

i (Li)ẆWW i

)
,

=
1
2

(
mi (ẋp− ż)2 +2miΨΨΨT

i (Li)︸ ︷︷ ︸
mmmT

ip

ẆWW i (ẋp− ż)

+ẆWW T
i miΨΨΨi(Li)ΨΨΨT

i (Li)︸ ︷︷ ︸
mmmii

ẆWW i

)
,

=
1
2

(
mi (ẋp− ż)2 +2mmmT

ipẆWW i (ẋp− ż)+ẆWW T
i mmmiiWWW i

)
.

We sum the above contributions to obtain the total kinetic energy

T =
1
2

mp (ẋp− ż)2 +
N

∑
i=1

1
2

(
(Mi +mi︸ ︷︷ ︸

Mi

)(ẋp− ż)2

+2(M ip +mmmip︸ ︷︷ ︸
Mip

)TẆWW T
i (ẋp− ż)+ẆWW T

(M ii +mmmii︸ ︷︷ ︸
Mii

)ẆWW
)
,

=
1
2

mp (ẋp− ż)2

+
N

∑
i=1

1
2

(
Mi (ẋp− ż)2 +2MT

ipẆWW i (ẋp− ż)+ẆWW T MiiẆWW i

)
,

=
1
2

Mpp (ẋp− ż)2 +
N

∑
i=1

1
2

(
2MT

ipẆWW i (ẋp− ż)+ẆWW T MiiẆWW i

)
,

where Mpp := mp +∑N
i=1 Mi. The total kinetic energy can be ex-

pressed in the quadratic form. We have,

T =
1
2

{
ẆWW T

1 · · · ẆWW T
n (ẋp− ż)

}

×




MMM11 000 · · · 000 MMM1p
000 MMM22 000 · · · MMM2p
... 000

. . . 000
...

000 · · · 000 MMMnn MMMnp

MMMT
1p MMMT

2p · · · MMMT
np Mpp



×





ẆWW 1
...

ẆWW n
(ẋp− ż)




·

The electric enthalpy density for each appendage has the form
Hi := 1

2CiS2
i − eiSiEi− 1

2 εiE2
i where Ei = Ei(xi) is the electric

field in the zi direction and Si =−zi
∂ 2wi
∂x2

i
is the axial strain given

by the kinematics of Bernoulli-Euler beam theory. The linear
piezoelectric constitutive law in the ith appendage of the SOA is
written as

{
Ti
Di

}
=

[
Ci −ei
ei εi

]{
Si
Ei

}

where Ci =CE
11,i is the stiffness coefficient, ei = e31,i is the piezo-

electric coefficient, Si = S11,i is the axial strain in the xi direction,
Ti = T11,i is the axial stress in the xi direction, Ei =E3,i is the elec-
tric field in the zi direction, and Di = D3,i is the electric displace-
ment in the zi direction. We can now write the electric enthalpy
density in the ith appendage as VH i =

∫ Li
0 AiHidxi. Since the

divergence of the electric field is zero, it is possible to express
electric field in the form EEE i = −∇φi or Ei := E3,i = − ∂φi

∂ zi
. As-

suming a linear variation in the potential φi across the thickness
of the piezoelectric patch in appendage i, we obtain

Ei(xi,yi,zi) =





− Vi
tp,i

(xi,yi,zi) ∈ top patch,
Vi
tp,i

(xi,yi,zi) ∈ bottom patch,
0 otherwise.

Substituting the expression for strain and the electric field, the
electric enthalpy for the ith appendage has the form

VH i =
1
2

∫ Li

0

(∫ ∫
Ciz2

i dyidzi

)(
∂ 2wi

∂x2
i

)2

dxi

+
∫ Li

0

(∫ ∫
eiziEidyidzi

)
∂ 2wi

∂x2
i

dxi

− 1
2

∫ Li

0

(∫ ∫
εiE2

i dyidzi

)
dxi,
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or

VH i =
1
2

∫ Li

0
CiIi

(
∂ 2wi

∂x2
i

)2

dxi−
∫ Li

0

eiκi

tp,i
χ[ai,bi]

∂ 2wi

∂x2
i

dxiVi(t)

− 1
2

εi2Ai(bi−ai)

t2
p,i

V 2
i ,

with (CiIi)(xi) :=
∫ ∫

Ciz2
i dyidzi and κTi :=

∫ ∫
AT

zidyidzi for the
top patch, κBi :=

∫ ∫
AB

zidyidzi for the bottom patch, and κi :=
κT,i−κB,i.

We substitute the Galerkin approximations of the
transverse displacement of the ith appendage, wi(t,xi) :=
∑ni

k=1 ψi,k(xi)Wi(t) = ΨΨΨT
i WWW i =WWW T

i ΨΨΨi, into the expression for the
exlectric enthalpy. We have,

VH i =
1
2

WWW T
i

∫ Li

0
CiIiΨΨΨ′′i ΨΨΨ

′′,T
i dxi

︸ ︷︷ ︸
KKKii

WWW i

−
∫ Li

0

κiei

tp,i
χ[ai,bi]ΨΨΨ

′′,T
i dxi

︸ ︷︷ ︸
BBBT

i

WWW iVi−
1
2

εi2Ai(bi−ai)

t2
p,i︸ ︷︷ ︸
Di

V 2
i ·

The expression for the electric enthalpy for the ith appendage
reduces to

VH i =
1
2

WWW T
i KKKiiWWW i−BBBT

i WWW iVi−
1
2

DiV 2
i ·

The total electric enthalpy of the piezoelectrically actuated SOA
attached to a primary structure has the form

VH :=
N

∑
i=1

(
1
2

WWW T
i KKKiiWWW i−BBBT

i WWW iVi−
1
2

DiV 2
i

)
+

1
2

kp (xp− z)2 ·

The virtual work of the external applied mechanical and electri-
cal loads is given by

δWnc = Fδ (xp− z)+
N

∑
k=1

ikδλk−
N

∑
k=1

2
λ̇k

Rk
δλk +δWnc,visc,

where F is the force applied to the primary structure, ik is the cur-
rent applied across the kth piezoelectric patch, Rk is the resistance
of the resistor in the shunt circuit attached to the kth appendage.
In order to consider the work done by the damping in the sys-
tem δWnc,visc, we define the Rayleigh’s dissipation function as

F := 1
2 q̇qqTCCCq̇qq with

qqq =
{

WWW 111 WWW 222 . . . WWW NNN (xp− z)
}T

, CCC =

[
C Cp
CT

p Cp

]
.

The virtual work done by the damping in the system can be calcu-
lated using the relation δWnc,visc,i = Qviscδq with Qvisc =− ∂F

∂ q̇ .
Hence, the expression for the virtual work done by the damping
in the system, δWnc,visc, is

δWnc,visc =−δqqqTCCCq̇qq.

In order to simplify the expressions of the kinetic energy, elec-
tric enthalpy and virtual work done, we define new vectors that
stack the the unknown displacements, currents, voltages and flux
linkages, and mass matrices in

W :=
{

WWW 1 . . . WWW N
}T

, V :=
{

V1 . . . VN
}T

,

i :=
{

iii1 . . . iiiN
}T

, � :=
{

λλλ 1 . . . λλλ N
}T

,

Mp :=
{

MMM1p . . . MMMN p
}
,

and define associated block matrices as

M := diag(MMM1,MMM2, . . . ,MMMN),

B := diag(BBB1,BBB2, . . . ,BBBN),

K := diag(KKK11,KKK22, . . . ,KKKNN),

D := diag(D1,D2, . . . ,DN),

ζζζ := diag
(

1
R1

,
1

R2
, ...,

1
RN

)
·

The expressions for kinetic energy, electric enthalpy, and virtual
work done by nonconservative electromechanical loads on the
system will consequently be written as

T =
1
2
(Mpp (ẋp− ż)2 +2(ẋp− ż)MT

p Ẇ+ ẆTMW),

VH =
1
2
(WTKW−2VTBTW−VTDV+ kp (xp− z)2),

δWnc = Fδ (xp− z)+ iT δ�−2�̇T ζζζ δ�−δqqqTCCCq̇qq,

= Fδ (xp− z)+ iT δ�−2�̇T ζζζ δ�−δ (xp− z)Cp (ẋp− ż)

−δWTCẆ−δ (xp− z)CT Ẇ−δẆTC(xp− z) .

Finally, we can apply Hamilton’s principle for piezoelectric con-
tinua coupled to ideal electrical networks. We must have

δ
∫ t1

t0

(
T −VVH

)
dt +

∫ t1

t0
δWH ,ncdt = 0
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for all admissible variations of the actual trajectory in electrome-
chanical configuration space. The variational statement becomes

∫ t1

t0

{
Mpp (ẋp− ż)δ (ẋp− ż)+MT

p Ẇδ (ẋp− ż)

+(ẋp− ż)MT
p δẆ+δẆTMẆ

}
dt

−
∫ t1

t0

{
δWTKW−δVTBTW−δWTBV−δVTDV

−δ �̇T C �̇+ kp (xp− z)δ (xp− z)
}

dt

+
∫ t1

t0

{
Fδ (xp− z)−2�̇T ζζζ δ�−δWTCẆ−δ (xp− z)CT Ẇ

−δẆTC(xp− z)−δ (xp− z)Cp (ẋp− ż)+ iT δ�
}

dt = 0

for all admissible variations. After performing standard steps
from variational calculus, we find that

∫ t1

t0

{
δ (xp− z)

(
−Mpp (ẍp− z̈)−MpẄ−Cp (ẋp− ż)−CT

p Ẇ

− kp (xp− z)+F
)

+δWT
(
−Mp (ẍp− z̈)−MẄ−CẆ−Cp (ẋp− ż)−KW+BV

)

+δ�T
(
−BT Ẇ−DV̇−2ζζζ �̇+ i−C V̇

)}
dt

+variational BCs = 0·

The above expression must hold for all admissible variations
δxp, δW, and δλ in the electromechanical configuration space.
Hence, we can conclude that the strong form the solutions must
satisfy the governing equations

[
M Mp
MT

p Mpp

]{
Ẅ

ẍp− z̈

}
+

[
C Cp
CT

p Cp

]{
Ẇ

ẋp− ż

}
+

[
K 000
000T kp

]{
W

xp− z

}

−
[
B
000

]
V=

[
000
F

]
,

or

[
M Mp
MT

p Mpp

]{
Ẅ
ẍp

}
+

[
C Cp
CT

p Cp

]{
Ẇ
ẋp

}
+

[
K 000
000T kp

]{
W
xp

}
−
[
B
000

]
V

=

[
Mpz̈+Cpż

F +Mppz̈+Cpż+ kpz

]
,

as well as the equality

BT Ẇ+DV̇+2ζζζ �̇− i+C V̇= 000·

Figure 6 depicts the magnitude of the frequency response func-

30 32 34 36 38 40 42
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M
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 (d
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Host Structure
With DVA
With SOA; N=55
With SOA; N=155

FIGURE 6: Frequency Response Function from External Force
Input to Displacement of the Primary Mass

tion from the external force input f to the primary displacement
xp when C = 6.9e10 Pa, ρm = 2.7e3 kg/m3, L = 0.5 m, w =
0.025 m, t = 0.003 m, a = 0.25 L, b = 0.75 L, tp = 0.0005 m,
e31 = −10.4 C/ m2, ε = 13.3 nF/m, mp = 5000 kg, Kpp =
6.3665e + 06 N/m, ζζζ = 0 ohm−1, C = 0, i = 0 A. The tip
masses of the appendages of SOA were chosen, from mi =
0.03424 kg to 0.07313 kg, such that the first resonant frequency
of all the appendages are evenly distributed around the resonant
frequency of the host structure.

ENERGY EXTRACTION VIA SWITCHING CONTROL
In principle the piezoelectric composite SOA can be used

both for passive and active vibration attenuation. In this section
we discuss a strategy for energy extraction using the SOA based
on a nonlinear switching controller. To illustrate the essentials
of the approach, we consider only a single, base-driven SOA ap-
pendage in this brief paper. Consider the system depicted in Fig-
ure 5, but modified so that the base of the appendage at the left
is driven vertically by an input motion z(t) in the x3 direction,
and with the addition of a single resistor R in parallel with the
capacitor C. The application of the thermodynamic variational
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principles in this case requires that a solution (w3,V ) satisfies
the pair of equations

ρmA
(

∂ 2w
∂ t2 + z̈

)
+

∂ 2

∂x2
1

(
CE

11I
∂ 2w
∂x2

1

)
,

− ∂ 2

∂x2
1

(
Ke31χ[a,b]

tp
V
)
= 0

∫ L

0

∂
∂ t

(
Ke31χ[a,b]

tp

(
∂ 2w
∂x2

1

))
dx1

+

(
ApεS

33(b−a)
t2
p

+C

)
V̇ +2

V
R
= 0,

for all (t,x1) ∈ [0,∞)× [0,L], subject to appropriate variational
boundary conditions and initial conditions. With the introduc-
tion of the Galerkin approximation w(t,x1) =∑ j N j(x1)w j(t), we
obtain equations of the form

Mi jẅ j +Ci jẇ j +Ki jw j = BiV −Piz̈ (5)

BT
i ẇi(t)+(Cp +C)V̇ +2

V
R
= 0 (6)

with the mass matrix Mi j :=
∫ L

0 ρmAN j(x1)Ni(x1)dx1, the stiff-
ness matrix Ki j :=

∫ L
0 CE

11IN′′j (x1)N′′i (x1)dx1, the control input

vector Bi :=
∫ L

0
Ke31χ[a,b]

tp
N′′i (x1)dx1, the generalized force Pi :=

∫ L
0 ρmANi(x1)dx1, and the effective capacitance of the appendage

Cp := ApεS
33(b−a)

t2
p

.

Let us focus on Equation 6. This equation can be interpreted
as the sum of currents in the circuit, where ip :=Biẇi+CpV̇ is the
current flowing through piezoelectric, and ic := 2CV̇ + 2

RV is the
current flowing through the shunt circuit. As the piezoelectric
beam vibrates, the direction of current, ip changes polarity. In
order for the capacitor to be charged, the direction of current in
the shunt circuit should remain the same. Hence a switching
circuit, which has two states, is added. If the voltage across the
circuit is denoted by Ṽ , we have Ṽ = V in state 0, while in state
1, it is Ṽ =−V . The governing equations for both the switching
states can be expressed as

ẅ j =−M−1
i j Ki jw j−M−1

i j Ci jẇ j±M−1
i j BiṼ −M−1

i j Piz̈, (7)

˙̃V =− 2
R(Cp +C)

Ṽ ∓ BT
i ẇi

(Cp +C)
,

or

˙̃V =∓ 2
R(Cp +C)

V ∓ BT
i ẇi

(Cp +C)
. (8)

x
3

x
2

b

a

t
p

L

2t
s

W
x

1

Massless,
rigid

Base motion
‘z(t)’

C R

State 0

State 1

FIGURE 7: The Switch Design and Associated Circuits

A switch is introduced as depicted in Figure 7. We choose
a nonlinear switching strategy that is defined in terms of the
switching variable s so that the right hand side in Equation 8 re-
mains positive during both the switching stages. We choose s= 0
when BT

i ẇi + 2V
R < 0 and s = 1 otherwise. With this nonlinear

switching strategy, the governing equations become

ẅ j =−M−1
i j Ki jw j−M−1

i j Ci jẇ j +(−1)sM−1
i j BiṼ −M−1

i j Piz̈, (9)

˙̃V =− 2
R(Cp +C)

Ṽ − (−1)sBT
i ẇi

(Cp +C)
. (10)

Equations 9 and 10 were simulated in Matlab when C =
6.9e10 Pa, ρm = 2.7e3 kg/m3, L = 0.1 m, w = 0.01 m, t =
0.002 m a = 0, b = L, tp = 0.001 m, Cp = 10e− 6 F, z =
0.01sin(100t) m, e31 =−10.4 C/ m2 and R= 10 kohm. Figure 8
represents the variation of voltage across the capacitor when the
switching strategy is not implemented. It is important to note that
the voltage is of the order of 10−3 V and has the same period as
the forcing frequency. Figure 9 depicts the time variation of volt-
age across the shunt circuit’s capacitor. It is evident form the fig-
ure that the voltage across the capacitor varies as expected from
an RC circuit when the switching strategy is implemented. The
effectiveness of passive linear modeling and nonlinear switching
to channel energy into the SOA will be discussed at the confer-
ence.
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