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ABSTRACT
Subordinate Oscillator Arrays (SOAs) have been shown

to be effective methods for band-limited vibration attenuation.
However, SOAs are very sensitive to error in parameter distribu-
tions. Slight disorder in structural parameters can render an SOA
ineffective. Recent research has shown that Piezoelectric SOAs
(PSOAs) provide an alternative that can limit the degradation of
the frequency response function due to the disorder. The capaci-
tive shunts attached to such SOAs can be tuned to change overall
electromechanical properties of the SOA post-fabrication. The
conventional methods of tuning, which study the Frequency Re-
sponse Function (FRF) of each oscillator in the array, can be an
extremely time-consuming process. To apply a systematic ap-
proach to tuning, an estimate of the disorder in structural prop-
erty distributions can be crucial. In this paper, we discuss a sim-
ple and effective methodology to estimate the actual structural
parameters and subsequently tune the PSOA to ameliorate the ef-
fect of disorder. We derive an adaptive estimation technique for
PSOAs and present numerical results that demonstrate improved
vibration attenuation of this approach.

INTRODUCTION
Attaching an array of linear oscillators to a mechanical struc-

ture can generate a spectrally flat response in the host [1, 2, 3].
These arrays of oscillators are termed Subordinate Oscillator Ar-
rays, or SOAs, in the literature. The isolated natural frequencies
of the oscillators in the SOA are concentrated around the natural

frequency of the primary structure to achieve a reduced response
over a band of frequency. Vignola et al. have shown in [1] that a
straightforward approach to design SOAs is to assign a distribu-
tion for the nondimensional frequencies of the SOA. The nondi-
mensional frequency of the nth oscillator in the SOA is defined
as

βn :=
√

γn

αn
, (1)

where γn is the ratio of the oscillator and the primary structure
stiffness and αn is the ratio of the oscillator mass to the host
structure mass of the nth oscillator in the SOA. In this paper, these
constants, βn, αn and γn are referred to as the nondimensional
frequency, mass and stiffness, respectively.

Even though SOAs can be efficient in achieving band-
limited vibration attenuation, they are susceptible to disorder in
the parameter distributions β , γ , α due to their very low mass
ratios [4]. Disorder in the parameter distributions can arise from
uncertainty in the structural parameters, manufacturing defects
or both. For example, oscillators in the SOAs designed for high
frequency and low mass host systems can have thickness of the
order of one-hundredth of a millimeter. In such cases, the uncer-
tainty in the structural parameters can be caused due to tolerance
limitations of manufacturing techniques like laser cutting, wa-
ter jet cutting and traditional machining, which can significantly
affect the performance of the SOA [4]. Furthermore, the per-
formance of SOAs operating under nonideal conditions like high

1 Copyright © 2018 ASME

Proceedings of the ASME 2018
Conference on Smart Materials, Adaptive Structures and Intelligent Systems

SMASIS2018
September 10-12, 2018, San Antonio, TX, USA

SMASIS2018-8065

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/SM

ASIS/proceedings-pdf/SM
ASIS2018/51944/V001T03A014/2568254/v001t03a014-sm

asis2018-8065.pdf by U
niversity O

f C
alifornia San D

iego user on 13 N
ovem

ber 2022

https://crossmark.crossref.org/dialog/?doi=10.1115/SMASIS2018-8065&domain=pdf&date_stamp=2018-11-14


non-dimensional frequency
0.9 0.95 1 1.05 1.1 1.15 1.2no

rm
al

iz
ed

 d
is

p 
x/

x st
  (

dB
)

10

20

30

40

bandwidth = 0.0125
bandwidth = 0.025
bandwidth = 0.05
bandwidth = 0.1

Figure 2: The array of attachments can be designed to make the response of the primary
element behave as a bandpass

non-dimensional frequency
0.8 0.9 1 1.1 1.2no

rm
al

iz
ed

 d
is

p 
x/

x st
  (

dB
)

10

15

20

25

30

35 disorder = 0.0001
disorder = 0.001
disorder = 0.01
disorder = 0.1

Figure 3: Performance degradation as errors in the property distributions increase from one
part in 104 (where bandpass performance is unaffected) to 10% (where bandpass response is
no longer apparent).

One parameter of importance to the performance of such systems is the modal overlap, defined
as the width of a resonance peak of a single element of the array over the separation of
adjacent peaks. Mathematically this is given by

h =
1

QnD

r
an

gn
(4)

While it has been predicted that a modal overlap, h < 2 will cause significant performance
degradation, Fig. 4 details the relationship with disorder across many values of modal overlap,
h . This is generated by taking the in-band difference between a zero-disorder response and the
response of a statistically randomized error allocation in the frequency distribution. Of interest
is the fact that the system shows a linear relationship between disorder and RMS difference
at low levels of disorder when h � 2. In this regime, the system will perform at or very close
to the ’as-designed’ response. In the second regime, the RMS difference is insensitive to
increasing disorder and the system begins to exhibit the visible response degradation shown
in Fig. 3. This transition also corresponds to the same one part in one-thousand threshold
discussed earlier. Beyond this region there is another region that exhibits the linear one-to-one
relationship between disorder and RMS difference of the transfer functions. In this region the
SOA is considered out of its performance range and inoperable. It is also worth noting, that

4

FIGURE 1: Deterioration of the Frequency Response Function
with Increasing Disorder in the System, [4]

temperatures can decline over time due to the degradation of its
structural properties. Figure 1 shows the effect of increasing er-
ror in parameter distributions on the performance of the SOA
in [4].

Paruchuri et al. [5,6] proposed tunable Subordinate Oscilla-
tor Arrays which have the potential to overcome this limitation.
Each oscillator in a tunable SOA is made of a piezoelectric bi-
morph beam attached to a shunt circuit. The capacitors in the
shunt circuit can be tuned to change the open and closed loop
stiffness and hence the isolated natural frequency of each oscil-
lator in the array. Even though [5, 6] discussed various advan-
tages of such tunable piezoelectric oscillator arrays, they did not
explain how piezoelectric oscillators can be tuned to achieve the
desired performance in the presence of disorder. The tuning pro-
cess would require explicit knowledge of the structural proper-
ties of the subordinate oscillators, which are unknown. Alterna-
tively, accurate estimates of the structural parameters obtained
through parameter estimation techniques can be used to calcu-
late the amount of capacitance that has to be added to or sub-
tracted from the shunt capacitor to achieve attenuation. This ap-
proach of tuning can be extended to applications beyond PSOAs.
For example, the natural frequency of a piezoelectric energy har-
vester [7,8] can be tuned to match the excitation frequency to in-
crease the efficiency. In case of artificial hair cell sensors that are
capable of mimicking human cochleas behavior [9], each MEMS
scale artificial hair can be tuned to have the desired natural fre-
quency in the presence of an error. The next subsection will talk
about different parameter estimation techniques considered in the
literature.

Structural Parameter Estimation
Traditionally, researchers in the field of control theory de-

veloped and implemented a plethora of online parameter estima-
tion techniques for various applications. Vibrations researchers
adopted some of these methods for several applications. Some of
the earliest works on parameter estimation can be seen in [10,11].

FIGURE 2: A PSOA with capacitive shunt circuit attached to a
primary structure.

They adapted a nonlinear filtering algorithm to estimate the mass,
stiffness and damping of a portal-frame rig and a squeeze-film
isolator. Mohammad et al. in [12] presented a way to estimate the
structural parameters of linear as well as nonlinear systems with a
single excitation. Bottasso et al. [13] used maximum likelihood
estimation based approach to determine the stiffness, mass and
inertial properties of a wind turbine blade. TESU et al. in [14]
used a poisson moment functional to filter the input data and es-
timate the structural parameters of a bridge structure. The use
of estimation techniques to update the model of a bridge was
shown in [15]. Le and Yu [16] presented an approach to estimate
the mass and stiffness of a structure using measured acceleration
data. Hwang et al. in [17] showed techniques to calculate the nat-
ural frequency of a structure by measuring only the output data.
The uncertainty involved with the estimation of the frequency
response function was modeled in [18, 19].

In this paper, we derive an estimator algorithm for the PSOA
based on the parallel model adaptive parameter estimation tech-
nique [20]. The overall algorithm consists of first estimating the
unknown parameters and subsequently redesigning the shunt cir-
cuit properties based on these estimates to achieve the desired
band-limited response.

PIEZOELECTRIC SUBORDINATE OSCILLATOR ARRAY
MODEL

In this section, we present the model of our system that is
shown in Figure 2. The equations of motion of a PSOA, consist-
ing of N subordinate oscillators with capacitive shunts, attached
to the host structure will have the form

[
M Mp
MT

p Mpp

]{
Ẅ
ẍp

}
+

[
C 000
000T Cp

]{
Ẇ
ẋp

}

+

[
K 000
000T kp

]{
W
xp

}
−
[

B
000

]
V =

[
000
Fp

]
,

(2)
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BT Ẇ+DV̇+C V̇ = 000· (3)

In this equation, xp is the displacement of the single degree of
freedom host structure, W is the vector of relative displacements
of the subordinate piezoelectric oscillators with respect to the
host structure, and V is the vector of voltages across piezoelectric
strips in the PSOA. With single mode approximation, W and V
are (N×1) dimensional vectors. The terms M, C, K, B, D and C
in Equation 2 and 3 are the diagonal matrices of the modal mass,
modal damping, modal stiffness, modal control input, piezoelec-
tric capacitance and shunt capacitance of the oscillators in the
PSOA, respectively. The term Mp is the modal mass coupling
vector that appears in the model due to the dynamic coupling of
the host structure and the PSOA. In Equation 2, the stiffness and
the damping of the host structure are represented by kp and Cp.
The term Mpp := mp +Mp, where mp is the primary mass and
Mp is the total modal mass of the PSOA. The term fp represents
the input force applied to the host structure. Detailed derivation
of these equations of motion can be found in [5,6]. As expected,
Equation 2 looks very similar to the equations of motion of a
DVA attached to a single degree of freedom system. As we dis-
cuss more fully in the next section, estimation technique will be
based on a state space formulation of our governing equations.
One such model can be derived directly from Equations 2 and 3
by defining X =

{
WT ,xp,ẆT , ẋp,V

}T and setting

AAA =




000 III 000
MMM−1KKK MMM−1CCC MMM−1BBB

000 (D+C )−1BBBT 000


 , (4)

BBB =





000
MMM−1[0,1]T

000



 . (5)

However, it is important to note that the state space formulation
defined by Matrices 2 and 3 is not the minimal realization of the
system. The integration of Equation 3 with respect to time, under
the assumption of zero initial conditions, gives an expression for
voltage,

V =−(D+C )−1BT W· (6)

We get a lower order model by substituting the expression for
voltage into Equation 2. It has the form

[
M Mp
MT

p Mpp

]{
Ẅ
ẍp

}
+

[
C 000
000T Cp

]{
Ẇ
ẋp

}

+

[
K̄ 000
000T kp

]{
W
xp

}
=

[
000
Fp

]
,

(7)

where

K̄ := K+B(D+C )−1BT . (8)

The reduced model can also be expressed in term of xp and
V instead of xp and W. The minimal state space represen-
tation of this model can be formulated by defining the states
X =

{
WT ,xp,ẆT , ẋp

}T and setting

AAA =

[
000 III

MMM−1K̄KK MMM−1CCC

]
, BBB =

{
000

MMM−1[0,1]T

}
. (9)

This state space representation can be implemented directly in
the estimation algorithm. However, we can only estimate K̄ and
not K, B and D. In the latter sections, we present a straightfor-
ward approach to estimate K, B and D. However, this approach
can only be used for passive tuning of the system. The approach
for active tuning of shunt capacitance would require an RC shunt
circuit. The second equation of motion of this system will look
like

BT Ẇ+DV̇+C V̇+
V
R
= 000· (10)

The state space representation of the model defined by Equation
2 and 10 lends itself for the estimation of K, B and D. In the
following discussions, we limit ourselves to the passive case.

PARALLEL MODEL ADAPTIVE PARAMETER ESTIMA-
TION

Our online estimation method for PSOAs is based on the
parallel model adaptive parameter estimation technique in [20].
We assume that all the states are available for measurement and
the input is bounded. In this section, we briefly discuss the proof
for PSOA parameter convergence and the corresponding learning
laws for parameters. A linear dynamical system can be expressed
in the form

ẊXX = AAAXXX +BBBUUU (11)

where XXX ∈ Rn and UUU ∈ Rm. To implement the adaptive estimator,
we define the parallel estimator model of Equation 11

˙̂XXX := ÂAAX̂XX + B̂BBUUU . (12)

The evolution of the state error ε̇εε := ẊXX− ˙̂XXX , obtained by subtract-
ing Equation 12 from Equation 11, has the form

ε̇εε = AAAεεε− ÃAAX̂XX− B̃BBUUU , (13)
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where ÃAA := ÂAA− AAA and B̃BB := B̂BB− BBB. We define the Lyapunov
function

V
(
ε, ÃAA, B̃BB

)
:= εεεT PPPεεε + tr

(
ÃAA

T
PPPÃAA

γ1

)
+ tr

(
B̃BBT PPPB̃BB

γ2

)
. (14)

The derivative of the Lyapunov function with respect to time has
the form

V̇ =−εεεT QQQεεε, (15)

a negative semidefinite function, when we choose the learning
laws for the parameters as

˙̃AAA = ˙̂AAA = γ1εεεX̂XX
T
, ˙̃BBB = ˙̂BBB = γ2εεεu. (16)

This implies that the state errors εεε as well the parameter errors ÃAA
and B̃BB will converge to a constant as time t→ ∞, as discussed in
detail in [20].

Persistence of Excitation
The learning laws presented in Equation 16 ensure that the

parameters converge to a constant. However, to guarantee the
convergence to the actual parameters, we have to use an input
that is rich enough to excite all the modes of the system. In other
words, we require a persistently exciting input. As defined in
[20], a piecewise continuous input, u(t) : R→ Rm is persistently
exciting in Rm if and only if there exist constants T > 0, c0 > 0,
and c1 > 0 such that

c1Im ≥
1
T

∫ t+T

t
UUU(τ)UUUT (τ)dτ ≥ c0Im,∀t ≥ 0. (17)

In many adaptive estimation applications, it is difficult to guaran-
tee persistence of excitation of the inputs. However, in the case
of the adaptive estimation of PSOAs, the experimental excitation
can be chosen to satisfy the persistence of excitation condition.

ESTIMATOR IMPLEMENTATION METHODOLOGY
The estimates of the state and input matrices AAA and BBB can be

obtained using the learning laws presented in the previous sec-
tion. When the PSOA is attached to a structure with well-defined
parameters, the mass, the stiffness and the damping properties of
the PSOA can be obtained from the estimates of the matrices AAA
and BBB. However, a straightforward method for the estimation of
PSOA’s structural properties is achieved by the elimination of the

FIGURE 3: Block Diagram of Parallel Model Adaptive Estima-
tor.

primary structure entirely. The equation of motion, in this case,
will simplify to

MẄ+CẆ+ K̄W =−Mpẍp︸ ︷︷ ︸
F

. (18)

The state space formulation of Equation 18 has fewer parameters.
Hence, it is easier to choose the adaptive gains γ1 and γ2 for the
learning laws given in Equation 16 that ensure relatively fast con-
vergence of the parameters. However, it is possible to estimate
only the ratios M−1K̄ and M−1C in this case. Capacitance tuning
using only the values of M−1K̄ requires certain approximations
which will become apparent in the next section. It is obvious
from Equation 8 that the overall stiffness K̄ is a function of the
shunt capacitance. If the values of K̄ are known for different val-
ues of C , the values of K, B and D can be obtained by solving
Equation 8. However, as discussed previously, only the values of
the ratio M−1K̄ can be obtained from the estimator. For different
shunt capacitances, it is possible to estimate the corresponding
values of M−1K̄. Dividing Equation 8 by the mass estimate of the
PSOA M gives the relation

{
M̂−1 ˆ̄K

}
i
:= M̂−1K̂+ M̂−1B̂(D̂+C i)

−1B̂T , (19)

where
{

M̂−1 ˆ̄K
}

i
is the ratio corresponding to the capacitance Ci.

By running the estimator at least three times for different val-
ues of Ci, the above equations can be solved for the values of
(K̂n/M̂n), (B̂2

n/Mn) and Dn for the nth oscillator in the array. An
exact solution can only exist when the parameter errors are pre-
cisely zero.
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SHUNT CAPACITANCE CALCULATION FOR TUNING

As discussed in the preceding sections, the advantage of us-
ing a PSOA is that its effective structural properties can be al-
tered by varying the shunt circuit. Having estimated (K̂n/M̂n),
(B̂2

n/Mn) and Dn using the techniques presented above, it is now
possible to calculate a new shunt capacitance that can give the
desired frequency response. In this section, we discuss the cal-
culations involved and the corresponding approximations made
for the determination of the new shunt capacitance . The nondi-
mensional frequency distribution of the nth subordinate oscillator
in the PSOA, as given in [6], is

βn =

√
γn

α̃n
, (20)

where α̃n := (Mn/Mpp), and γn := (K̄n/kp). It is important to note
the difference in the definition of the nondimensional mass in the
SOA and PSOA cases. As shown in [6], one of the PSOA design
approaches assigns a discrete distribution for βn. The presence of
uncertainty in structural parameters causes the value of βn to de-
viate from the assigned value. We define a new nondimensional
frequency distribution in terms of the estimated parameters as

β̂n :=

√
γ̂n
ˆ̃αn
, (21)

where ˆ̃αn := (M̂n/M̂pp), γ̂n := ( ˆ̄Kn/k̂p), where M̂n, M̂pp, ˆ̄Kn and k̂p
are the estimated values of Mn, Mpp, K̄n and kp. Since we cannot
estimate the value of the total modal mass of the PSOA, Mp, we
cannot calculate β̂n. It has been demonstrated in [1] that SOAs
can achieve the desired flat frequency spectra at mass ratios as
low as 1% or when mp�Mp. Hence, we can make the approx-
imation Mpp ≈ mp. The new shunt capacitance of the piezoelec-
tric oscillator Cnew is chosen such that the value of β̂n matches
the value for βn. We have the relation

ˆ̄Kn = K̂n +
B̂2

n

D̂n +Cnew
. (22)

Equating β̂n with the desired nondimensional frequency βn result
in the expression,

βn =

√√√√√
ˆ̄Kn
M̂n
kp
mp

=

√√√√
K̂n
M̂n

+ B̂2
n

M̂n(D̂n+Cnew)

ω2
p

,

B̂2
n

M̂n(Dn +Cnew)
= β 2

n ω2
p−

K̂n

M̂n
,

=⇒ Cnew =

B̂2
n

Mn

β 2
n ω2

p− K̂n
M̂n

−Dn. (23)

Using Equation 23, we can calculate the new shunt capacitance
Cnew that will constrain the nondimensional frequency distribu-
tion β̂n to the desired value.

Capacitive Tuning Range
One of the important design considerations to consider while

designing a piezoelectric oscillator with a shunt capacitor is its
capacitive tuning range. Irrespective of the value of the shunt ca-
pacitor, the natural frequency of the piezoelectric oscillator with
capacitive shunt can take values only within a limited range. The
natural frequency of a piezoelectric oscillator with a capacitive
shunt is given by

ω =

√
K+ B2

D+C

M
. (24)

As evident from the above equation, we have the short and open
circuit natural frequencies

ωn∞ = lim
C→∞

ω(C ) =

√
K
M

and (25)

ωn0 = lim
C→0

ω(C ) =

√
K+ B2

D

M
(26)

respectively. This defines the range of natural frequencies that
can be achieved by shunt tuning. The nondimensional frequency
of an oscillator in a PSOA β̂n can be tuned to the desired value
only when β̂n ·ωp is within this tunable range.

NUMERICAL RESULTS
The adaptive algorithm was implemented to estimate the

structural parameters of a PSOA with one subordinate oscil-
lator. The structural properties of the subordinate piezoelec-
tric oscillator used in simulations were Mn = 0.12785 kg, Cn =
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0.0287 Nsec/m, Kn = 16.108 N/m, Bn = −6.861e− 04 N/V,
and Dn = 2.9925e−08 F, βn = 1. Table 1 shows ( ˆ̄Kn/Mn) values
obtained after running the adaptive algorithm for 2000 seconds
with different shunt capacitances, adaptive gains and inputs. Fig-
ures 4, 5 and 6 show the convergence of the entries of the state
matrix AAA and input vector BBB to the actual values when the plant’s
shunt capacitance Cn = 0 F. As evident from these figures, the
chosen input was sufficient to persistently excite the system and
ensure the convergence of the parameter estimates, ÂAA and B̂BB, to
the true values, AAA and BBB, respectively.
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FIGURE 4: The actual values and the corresponding estimates
of the elements in the first column of the state matrix AAA when
Cn = 0 F.

Using the different values of ( ˆ̄Kn/Mn) and Cn given in Ta-
ble 1, the values of (K̂n/M̂n), (B̂2

n/Mn) and Dn were obtained by
solving Equation 19. The true and the estimated values of all
the parameters are given in Table 2. The new capacitance that
matches the natural frequency of the subordinate oscillator with
that of the primary structure with mass mp = 3.5 kg, damping
Cp = 0.11047 Ns/m and stiffness kp = 661.25 N/m was calcu-
lated using Equation 23. Table 3 shows the values of Cnew cal-
culated using the parameters extracted from the estimator at dif-
ferent times. The frequency response from the force input to the
displacement of the actual subordinate piezoelectric oscillator for
shunt capacitance values given in Table 3 is shown in Figure 7.
Figure 8 shows the frequency response of the primary structure
attached to a piezoelectric oscillator with shunt capacitance val-
ues given in Table 3. It is evident from the figures that the nondi-
mensional frequency βn converges to the desired value of 1, as
the parameter estimates converge to the actual values.
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FIGURE 5: The actual values and the corresponding estimates of
the elements in the second column of the state matrix AAA when
Cn = 0 F.
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FIGURE 6: The actual and estimated values of the entries in the
vector BBB when Cn = 0 F.

CONCLUSION
This paper presents an approach for determining the shunt

capacitance that can produce a PSOA whose frequency response
achieves attenuation over a band-limited frequency range. This
paper discusses an online algorithm to estimate parameters and
modify the structural properties of a piezoelectric subordinate os-
cillator using a parallel model adaptive estimator. We examine
the different approaches for the determination of the structural
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Cn,i
(Farads) Input UUU (N)

Adaptive
Gains
γ1, γ2

ˆ̄Kn
Mn(

N
kg.m

)

0 1.5 ( sin14t + sin15t +
sin16t )

5, 5 248.81

5e−08 1.5 ( sin13t + sin14t +
sin15t )

6, 6 172.23

1 1.5 ( sin10t + sin11t +
sin11t )

3, 3 126.05

TABLE 1: The different values of ( ˆ̄Kn/M̂n) obtained from the es-
timator for different shunt capacitance Cn attached to the piezo-
electric oscillator.

Parameters True Estimated
Kn
Mn

(
N

kg.m

)
125.99 126.05

B2
n

Mn

(
N2

kg.V2

)
3.682e−06 3.701e−06

Dn (Farads) 2.993e−08 3.015e−08

TABLE 2: The true and the estimated values of the structural
parameters of the piezoelectric oscillator.

Markers in Figure 4 t (sec) Cnew (Farads)

A 100 4.3389e−08

B 300 1.4976e−08

C 500 1.6731e−08

D 700 2.8445e−08

E 2000 2.8716e−08

TABLE 3: The new shunt capacitance values calculated using
Equation 23 after running the estimator for different time peri-
ods.

properties of the piezoelectric oscillator from the estimated state-
space matrices. Finally, we have presented numerical results for
a prototypical example. The results show that the parallel model
adaptive estimator is adequate for the determination of structural
properties of a piezoelectric oscillator and hence for determining
the new shunt capacitance. The adaptive estimator used in this
paper requires knowledge of all the states of the system. The
techniques discussed in this paper demonstrate the feasibility of

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

10-1

100
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B
C
D
E

FIGURE 7: The frequency response of the plant attached to dif-
ferent shunt capacitors Cnew given in Table 3.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

10-4
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10-1
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FIGURE 8: The frequency response of the primary structure at-
tached to the subordinate piezoelectric oscillator with shunt ca-
pacitances Cnew given in Table 3.

implementing estimators for online estimation of structural prop-
erties and active tuning of the shunt capacitance.
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[7] ČEPONIS, A., MAŽEIKA, D., KULVIETIS, G., and
YANG, Y., 2018. “Piezoelectric Cantilevers for Energy
Harvesting with Irregular Design of the Cross Sections.”.
Mechanika, 24(2), mar, pp. 221–231.

[8] Wang, K. F., Wang, B. L., and Zeng, S., 2018. “Analysis
of an array of flexoelectric layered nanobeams for vibration
energy harvesting”. Composite Structures, 187, pp. 48–57.

[9] Davaria, S., and Tarazaga, P. A., 2017. “MEMS scale ar-
tificial hair cell sensors inspired by the cochlear amplifier
effect”. Vol. 10162, pp. 101620G–10162–10.

[10] Stanway, R., Mottershead, J. E., and Tee, T. K., 1989. “Es-
timation of mass, damping and stiffness parameters in me-
chanical vibrating structures”. Transactions of the Institute
of Measurement and Control, 11(5), dec, pp. 249–255.

[11] Mottershead, J. E., and Foster, C. D., 1988. “An instru-
mental variable method for the estimation of mass, stiff-
ness and damping parameters from measured frequency re-
sponse functions”. Mechanical Systems and Signal Pro-
cessing, 2(4), pp. 379–390.

[12] Mohammad, K. S., Worden, K., and Tomlinson, G. R.,
1992. “Direct parameter estimation for linear and non-
linear structures”. Journal of Sound and Vibration, 152(3),
pp. 471–499.

[13] Bottasso, C. L., Cacciola, S., and Croce, A., 2013. “Estima-
tion of blade structural properties from experimental data”.
pp. 501–518.

[14] TESU, L., ATANASIU, G. M., and COMISU, C.-C., 2016.
PARAMETER ESTIMATION IN CONTINUOUS TIME
DOMAIN.

[15] Sanayei, M., Khaloo, A., Gul, M., and Necati Catbas, F.,

2015. “Automated finite element model updating of a scale
bridge model using measured static and modal test data”.
Engineering Structures, 102, pp. 66–79.

[16] Le, V., and Yu, T., 2015. “Mass and stiffness estima-
tion using mobile devices for structural health monitoring”.
Vol. 9437, pp. 94371B–9437–11.

[17] Jae-Seung, H., Dae-Kun, K., and Ahsan, K., 2018. “Esti-
mation of Structural Modal Parameters under Winds Using
a Virtual Dynamic Shaker”. Journal of Engineering Me-
chanics, 144(4), apr, p. 4018007.

[18] Mao, Z., and Todd, M., 2012. “A model for quantifying un-
certainty in the estimation of noise-contaminated measure-
ments of transmissibility”. Mechanical Systems and Signal
Processing, 28, pp. 470–481.

[19] Mao, Z., and Todd, M., 2013. “Statistical modeling of fre-
quency response function estimation for uncertainty quan-
tification”. Mechanical Systems and Signal Processing,
38(2), pp. 333–345.

[20] Ioannou, P. A., and Sun, J., 1996. Robust Adaptive Control.
Dover Publications Inc.

8 Copyright © 2018 ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/SM

ASIS/proceedings-pdf/SM
ASIS2018/51944/V001T03A014/2568254/v001t03a014-sm

asis2018-8065.pdf by U
niversity O

f C
alifornia San D

iego user on 13 N
ovem

ber 2022




