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Abstract
Subordinate oscillator arrays (SOAs) attached to a host structure have been shown to achieve flat
attenuation of the frequency response over a band around a target natural frequency of the host. Due to
their sensitivity to disorders that can arise from sources such as fabrication errors, as well as
uncertainties in their structural properties or that of the host, SOAs can be challenging to implement in
some applications. To overcome this shortcoming, piezoelectric subordinate oscillator arrays (PSOAs)
are studied in this paper. This paper models PSOAs using variational principles to facilitate the
analysis and development of design strategies. A closed-form expression for the frequency response
function of the host structure is then used to design the PSOAs with and without uncertainties. This
paper shows that the flat attenuation over a frequency band around a harmonic of the host can be
achieved by assigning a distribution to the mechanical, electrical, or electromechanical properties of
the PSOAs. For instance, it is shown that choosing a distribution of capacitive shunt circuits can
achieve essentially the same qualitatively flat attenuation as that of classical SOAs. In this sense, the
approach in this paper generalizes the results attained for conventional SOAs. Finally, the paper
investigates the robustness of PSOAs, that is, their relative insensitivity to types of uncertainties. It is
shown that PSOAs afford the chance to ameliorate some types of sensitivities that prove problematic
for SOAs that are purely mechanical in nature. The notion of performance recovery is introduced; this
measure quantifies how much attenuation loss due to uncertainty in an initial SOA or PSOA design
can be recovered by modification of the electrical properties alone.

Keywords: piezoelectric subordinate oscillator arrays, shunt tuning, performance recovery,
broadband flat vibration attenuation

(Some figures may appear in colour only in the online journal)

1. Introduction

The vibrations community has studied vibration attenuation
of a host structure of given structural properties using
attached substructures for decades. One classic example is a
dynamic vibration absorber (DVA) attached to a host struc-
ture, which now appears as a typical example in vibration
textbooks [1]. By analyzing the frequency response function,
one can conclude that a DVA is a simple yet effective method

for vibration attenuation. However, DVAs achieve attenua-
tion only in a narrow frequency band around a particular
frequency of operation. Any variation in the driving fre-
quency can render the DVA ineffective, and it is known that
the response is amplified at some nearby, off-resonance
driving frequencies. Thus, if the driving frequency changes, a
classical DVA has to be re-tuned, that is it must be re-built, to
match the new input frequency.

It is well-known that these potential disadvantages of a
classical DVA have been addressed in many ways. To achieve
a broader frequency range of vibration reduction, damped
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vibration absorbers have been used. Many investigators have
proposed methods which optimize parameters of damped
vibration absorbers [2–6]. Researchers have tried to overcome
these limitations by attaching the host structure to an array of
linear vibration absorbers whose natural frequencies form a
band in the frequency domain [7–11]. This is possible when
the frequency band of the array is spaced around the host
structure’s natural frequency. These arrays of oscillators have
been referred to in the literature as Subordinate Oscillator
Arrays, or SOAs. At first, designing an SOA might look like a
complicated task since designers are forced to choose the
structural properties of multiple absorbers. Vignola et al [11]
show that simple ‘closed form’ design strategies, ones that do
not require optimization, that prescribe distributions repre-
senting the structural properties of the SOA makes imple-
menting SOAs much more straightforward in practice.

At the same time, a large number of piezoelectric systems
have been studied to achieve a variety of engineering goals.
Some of the most recent are summarized in table 1. In
section 2 we review these references in more detail, but here
we note that many of these references seek to develop passive
and active vibration absorbers. Other papers in the table
obtain vibration attenuation as a byproduct of their research:
methods for energy harvesting from structures naturally
induce attenuation of structural response.

Perhaps surprisingly, there is little or no formal overlap
between the study of mechanical domain SOAs and the literature
on composite piezoelectric systems to achieve vibration
attenuation. In particular, none of the references in table 1 dis-
cuss, or even refer to, the notion of introducing distributions or
mixtures of properties (as in [7–11]) of attached piezoelectric
arrays connected to a host. In view of this fact, one of the overall
and guiding aims of this paper is to explore how the philosophy
of design for SOAs in [11] in terms of distributions of properties
can be extended to arrays of piezoelectric SOAs or PSOAs.

The answer to this general question is that assigning
distributions of electromechanical properties of PSOAs
defines a theoretically sound, closed form, simple, effective
strategy to achieve vibration attenuation in a host structure.
From a technical standpoint, the efficacy of the method can be
traced to finding a closed form expression for the frequency
response function from input excitation to the host response.
In this expression, which is valid for an arbitrary number of
attached piezoelectric elements, all the electromechanical
degrees of freedom of the PSOA have been eliminated. It is
the specific zero-nonzero block structure of the coupled
equations governing the PSOA and the (non-piezoelectric)
host (see equations (12) below) that allow the elimination of
all piezoelectric states.

To be sure, the governing equations for a PSOA coupled to
a host are indeed a very special type of linear piezoelectric sys-
tem, and such a simple reduction cannot be carried out in general
linearly elastic piezoelectric systems. Note that this zero-nonzero
block structure does not, in general, arise for instance in modal or
finite element approximations of ‘monolithic’ linear, distributed
piezoelectric continua models such as used for beams, plates, or
shells, such as those modeled in a general form in [12], or in
many of the references in table 1. It is conceivable that such a

block structure, and subsequent elimination of the piezoelectric
states, could be carried out with the introduction of static or
Guyan reduction, the definition of independent and dependent
coordinates or other component mode synthesis approaches [13].
See the comments following equation (13). However, this pro-
cess amounts to another level of approximations beyond and in
addition to discretization, one that is nontrivial and sometimes
impossible to carry out. In any event, it is the specific block
structure of the PSOA and host equations that enables the closed
form expression for the FRF of the host to be derived.

In the remainder of this paper, we begin with a careful
literature review of related electromechanical modeling of
piezoelectric systems in section 2. Section 3 summarizes the
relevant technical background for SOAs. Section 4 describes
models for PSOAs, while section 5 summarizes the derivation
of the frequency response function from the input to the host
response when it is equipped with a PSOA. The closed form
design strategies, including the specific discussion of mass
distribution-only and capacitance-distribution-only methods,
is given in section 5. The experimental setup is introduced in
section 6, section 7 summarizes the numerical simulations of
the experiment, and 8 reviews the experimental results. The
conclusions of the paper are given in section 9.

2. Piezoelectric structures literature review

Researchers have studied active and passive structures based
on piezoelectric materials for vibration attenuation for some
time, and an extensive literature on this topic has accumulated
over the years. The term piezoelectric system covers a wide
range of nuanced systems that vibration engineers and
researchers have used for a variety of applications. Just within
the field of vibration attenuation, we can classify piezoelectric
systems into multiple categories based on the methodology
used to achieve attenuation. The objective of this section is to
highlight the similarities and the differences of such systems
described in the literature with the one discussed in this paper.

Indeed, one glaring difference between many studies of
composite piezoelectric systems and that tackled in this paper is
that the latter system is made up of a family of linear oscillators
that are connected to the host structure. That is, the piezoelectric
components are only connected to the host, not to each other.
Even though the oscillators in the PSOA are not coupled to each
other, the coupling arises through the host. Thus, the response of
the PSOA in itself is not of particular interest in this context, and
the primary focus of this paper is on the input-output response of
the host structure coupled with a PSOA. This fact stands in stark
contrast to many models of distributed active piezoelectric sys-
tems that are studied in the literature. Furthermore, as mentioned
above, the nature of the PSOA connection to the host creates a
coupled linear ODE that enables the derivation of a closed-form
expression for host frequency response function. This expression
makes it easier to develop well-defined design techniques with
predictable performance.

Further, some of the topics that are not traditionally
discussed on papers on linear piezoelectric systems, but are
addressed here, include: (1) the effect of robustness and
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uncertainty on the performance of a design; (2) the develop-
ment of a simple general design approach that relies on the
distributions of electromechanical properties of the PSOA;
and (3) an analysis of the performance recovery ability of
a PSOA.

Because of the sheer number of studies of piezoelectric
systems for vibrations attenuation, the only the most relevant
categories of research are reviewed here. Table 1 shows each
general category and a corresponding list of papers that fall
under a category. Of course, some of these studies can fall
under multiple categories. Such studies have been classified
based on the authors’ assessment of the principal features of the
approach. Piezoelectric systems have been studied for more
than half a century, and one of the earliest references is [14].
However, most of the papers presented in table 1 are from
studies conducted in the past 25 years. In addition to the
piezoelectric systems shown in table 1, SOAs have been
included as a category due to its similarity to the system pre-
sented in this paper. PSOAs can be seen as a generalization of
SOAs or as a particular case of coupled linearly piezoelectric
systems. Discussions on these systems appear regularly in this
paper since these systems have inspired PSOAs.

The largest category in table 1 is the one that contains
piezoelectric equivalents of DVAs. The papers in the category
include qualitative, numerical and experimental studies of
piezoelectric oscillators with shunt circuits. In the studies, the
mechanical part of the systems has been modeled using lumped
(both single degree of freedom and multi-degree of freedom) as
well as distributed parameter systems. The associated shunt
circuits have been modeled as passive (using RLC circuits) and
active systems. When passive electrical circuits are attached,
these can be understood either as attempts to change the
effective properties of the whole system or to induce

(additional) poles and harmonics into the system response of
the original structure. The papers in this category have dis-
cussed the modeling and design of piezoelectric systems.
While these systems provide a theoretical framework for the
design and analysis of PSOAs, they do not exploit the specific
structural advantages of the PSOA and host system. Further,
these papers do not discuss the robustness of the systems and
performance recovery using shunt tuning. In essence, the
PSOA systems can be thought of as a combination of SOAs
and the piezoelectric systems in this category.

The third category in table 1 includes the systems that use
state switching to achieve parameter shifts in electro-
mechanical properties of a structure. For example, it is well-
known that by switching between two capacitances, one can
change the effective stiffness and hence the natural frequency
of the system. These systems are sometimes considered as
semi-active systems since these systems switch between
passive circuits, at the expense of the relatively low energy
consumed to power the switches, in contrast to modulating
voltage or current in the shunt circuit. Several studies in
table 1 investigating this effect can be found in the past two
decades. However, a general study of robustness of these
systems has not been undertaken in these references. We will
argue that the use of flat-band solutions like PSOAs can be an
effective alternative to some of these systems, especially
when the frequency band of operation is known and restricted
to a fewer number of resonant peaks. This is demonstrated in
particular in the conclusions in section 9.

Another recent class of systems which have attracted the
interest of the vibrations community are those that are asso-
ciated with metamaterials and waveguide design. Metama-
terials are composed of an identical array of substructures that
are periodically distributed along the length of the host

Table 1. Relevant piezoelectric systems literature summary.

General type Reference(s)

SOAs [10] 2012, [11] 2009, [15] 2012, [16] 2016, [8] 2005, [7] 1996, [17] 2001,
[18] 1997, [9] 2005

Qualitative, numerical, and experimental study of piezo-
electric systems with shunt circuits

[19] 1990, [20] 2000, [21] 2000, [22] 2001, [23] 2001, [24] 2006, [25] 2010,
[26] 2011, [27] 2011, [26] 2011, [28] 2011, [29] 2011, [30] 2012, [31]
2012, [32] 2012, [31] 2012, [32] 2012, [33] 2013, [34] 2014, [35] 2014,
[36] 2016, [37] 2016, [38] 2017

Mechanical SDOF or MDOF system, state switched or
semi-active piezoelectric DVAs

[39] 1999, [40] 1999, [41] 2000, [42] 2000, [43] 2001, [44] 2001, [45] 2002,
[46] 2004, [47] 2006, [48] 2006, [49] 2008, [50] 2009, [51] 2010, [52]
2011, [53] 2012

Gain scheduled or operating mode switched piezoelectric
composite DVAs

[54] 1997, [55] 1998, [56] 2000

Optimization-based DVA analysis and design [57] 2003, [58] 2012, [59] 2014

Piezoelectric energy harvesting, unswitched or switched [54] 1997, [55] 1998, [56] 2000, [60] 2010, [61] 2009, [62] 2007, [63] 2013,
[64] 2006, [65] 2005, [66] 2009, [67] 2012, [68] 2012, [69] 2012,
[70] 2003

Metamaterials and wave propagation design and tailoring [71] 2011, [72, 73] 2013, [74] 2013, [75] 2015, [76] 2016, [77] 2016, [78]
2017, [79] 2017, [80] 2017, [81] 2017

3
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structure. By doing so, a bandgap is created in the frequency
response of the host structure. Since the study of these sys-
tems is a relatively recent innovation, most of the relevant
studies have been focused on analyzing the basic effect of
metamaterials in the frequency domain, analyzing the limiting
behavior, or on optimizing the placement of the piezoelectric
oscillators on the host structure. Issues like robustness or
sensitivity to perturbation in the location or the parameters of
the piezoelectric oscillators are yet to be fully understood.
Furthermore, the host systems considered in most of the
relevant studies are monolithic beams, plates, or shell struc-
tures. Because of the nature of the problem of synthesizing
metamaterials, it is reportedly more difficult to generalize the
synthesis of metamaterial structures to arbitrary geometry.
This can be attributed to the fact that metamaterials rely
heavily on the periodicity of the substructures which can be
hard to define in complex structures. Theoretically, the gov-
erning equations of metamaterials systems and PSOAs look
very similar. However, there are significant differences in the
models as well as in the intended goals of the overall system
after synthesis. One primary difference is that substructures
are generally identical in metamaterials, whereas, parameter
distributions dictate the mix of material properties of the
piezoelectric substructures in PSOAs. Metamaterials create
bandgaps by essentially moving existing resonant peaks
outside of the frequency band of interest. Whereas PSOAs
extend the effect of DVAs to cancel an existing resonant peak
in the frequency response. This implies that modal spillover is
very minimal in case of PSOAs as opposed to that of meta-
materials. However, it is important to note that the frequency
band of metamaterial systems are typically larger (spanning
over multiple resonant peaks), and sometimes much larger,
than that of the PSOAs.

3. Subordinate oscillator arrays

Figure 1 shows a simple SOA, consisting of N mass-spring-
damper oscillators, attached to a host structure of mass mp,
stiffness kp, damping cp and natural frequency ωp [11, 15, 16].
The mass, stiffness and the damping of the nth oscillator in
the SOA are denoted by mn, kn and cn, respectively. Since the
PSOA approach used in this paper is very similar to the one
used in [11], a brief summary of relevant theory is presented
here. Vignola et al [11] derived a closed form equation for the

frequency response function (FRF) of the map from the
applied external force Fp to motion of the primary xp. The
frequency response at a given nondimensional frequency Ω

can be calculated using the function
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In equations (1) and (2), the subscript p represents the prop-
erties of the primary or host structure, and the subscript n
represents the properties of the nth attached substructure. The
variable bn is the nondimensional frequency of each sub-
structure in the SOA. It can be expressed in terms of the
nondimensional mass αn and the nondimensional stiffness γn
as shown in equation (2). The constants Qn and Qp are the
quality factors of the substructure and the host structure,
respectively. From equation (1), it is evident that the fre-
quency response of the host structure attached to an SOA
depends on the distributions of the nondimensional mass,
stiffness and frequency denoted by αn, γn and βn, respec-
tively. This implies that the problem of designing an SOA
amounts to a problem of selecting three distributions instead
of 3N parameters for all the substructures. The inter-
dependence of αn, βn and γn implies that we have to construct
distributions for only two of the three terms.

3.1. Nondimensional frequency distributions

As mentioned earlier, the design of a flat frequency response
using SOAs distributes the frequency band of the SOA
around the host structure’s natural frequency. This is achieved
by assigning an appropriate distribution to the nondimen-
sional frequency βn. The distribution used in [11] for βn is
represented by equations of the form
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The nondimensional frequency distribution defined by
equation (3) is a antisymmetric curve centered at 1. The
parameter Δ in equation (3) represents the bandwidth of
the nondimensional frequency distribution. Figure 2 shows
the frequency response of the host structure for various values
of Δ. The parameter p determines how the substructures are
spaced around the center. When p=1, the frequency of the
substructures are equally spaced around the natural frequency
of the host structure. When p=0, the host structure is

Figure 1. Array of single degree of freedom oscillators attached to a
host structure [11, 15, 16].

4

Smart Mater. Struct. 28 (2019) 085046 S T Paruchuri et al



attached to a DVA whose nondimensional frequency is 1.
Finally, = ¥p corresponds to case where the host structure
is attached to two DVA’s with nondimensional frequencies
equal to 1−Δ/2 and 1+Δ/2. Later in this paper, it will be
shown that a nondimensional frequency distribution as
expressed in equation (3) can be used to design a PSOA.

3.2. Effect of disorder on performance of SOAs

Disorder or parameter uncertainties in systems can be induced
due to fabrication errors in substructures or measurement
errors in structural properties of the host. Vignola et al [16]
studied the effect of disorder on the frequency response of a
primary structure attached to an SOA. Figure 3 shows the
degradation of SOA’s performance as the disorder is
increased. The figure shows a flat frequency response when
uncertainty is low and a non-flat response as uncertainty
approaches 0.1. These results indicate that SOA’s desired
performance is limited by the precision of manufacturing and
accuracy of measurements of the host’s structural properties.
One possible solution to overcome some of these issues is to
develop a tunable SOA, a PSOA, which potentially allows for
effective change of structural properties after fabrication.

4. Host structure with PSOA model

In this section, the  variational principle which is based on
extremization of the electric enthalpy and is discussed in
appendix A.1, will be used to model a PSOA attached to a
host structure. The canonical PSOA consists of a series of

bimorph beams with shunt circuits connected to them. The
shunt circuit of kth bimorph beam in the array consists of a
resistor Rk, capacitor k and current source ik in parallel.
Starting with a distributed beam model, finite dimensional
approximations are introduced. Ultimately each oscillator in
the PSOA is modeled as a single degree of freedom system.
Figure 4 shows a piezoelectric subordinate array attached to a
host structure. The dimensions of each appendage in the
PSOA are shown in figure 5. The host structure is assumed to
have two inputs, base motion z and applied force Fp.

If xp represents the absolute motion of the primary
structure and wi is the relative motion of appendage i in a
PSOA with N substructures, the kinetic energy of the system
shown in figure 4 can be expressed as
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where ρi, Ai and Li are the density, cross sectional area and
length of the bimorph, respectively. The cross sectional area

Figure 2. Broadband flat attenuation by SOA for varying
bandwidths [16].

Figure 3. Degradation of SOA’s performance with disorder [16].

Figure 4. A PSOA attached to a host structure.

Figure 5. Dimensions of a substructure in a PSOA.
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is defined as ≔ · A t2i s i i, , where t2 s i, and i are the
thickness and width of the substrate as shown in figure 5,
respectively. Further, mi is the tip mass attached to the
bimorph, and mp is the host structure’s mass. The terms I, II
and III in equation (4) represent the kinetic energy contribu-
tions from the primary mass of the host structure, distributed
mass of each appendage in the SOA and tip mass of each
appendage in the SOA respectively.

After following the steps shown in appendix B, the
kinetic energy can be expressed in the quadratic form
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In order to derive an expression for the electromechanical

potential, we first derive a representation for the electric
enthalpy density. The linear electric enthalpy density of each
appendage is calculated from the following expression in [82]

≔ ( )- -  C S e S E E
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where Ei is the electric field, CE
i is the material stiffness at

constant electric field, ≔ - ¶
¶

S zi i
w

x
i

i

2

2 is the axial strain in a

Bernoulli–Euler beam, ei is the piezoelectric constant,  i
S is

the permittivity of the piezoelectric material at constant strain.
After substituting the expression for electric enthalpy density
into equation (A.3), the total electromechanical potential of a
PSOA attached to a host structure will have the form

≔ · ( )  
å+
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  K x
1

2
7p p

i

N
2

IV
1

V

i

In the above equation, term IV represents the strain energy of
the host structure’s spring with stiffness Kp. Further, term V
represents the electromechanical potential of each piezo-
electric oscillator in the PSOA and is expressed in the form

( )= - - -  W K W B W V D V V
1

2

1

2

1

2
, 8i i

T
ii i i

T
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Here, Di is the effective capacitance of the piezoelectric
material, i is the shunt capacitance, Bi

T is the control influ-
ence matrix and Vi is the voltage across the shunt circuit. The
intermediate steps that lead to the above expression are dis-
cussed in appendix C. The virtual work done by the non-
conservative electromechanical loads will have contributions
from the force input, current source, resistor and damping in

the system. The virtual work done is expressed in the form

( )

˙
( )

z å

å

d d dl

l
dl d

= - +

- +

=

=

W F x i

R
W , 9

nc p p
k
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k
k nc visc

1

1
,

where λk is the flux linkage across the shunt circuit, ik is the
current source in the shunt circuit, Rk is the resistor in the
shunt circuit and Fp is the force applied to primary mass mp.
The virtual work done by mechanical damping can be derived
from d d= qW ,nc visc

T
visc, wherevisc is the generalized for-

ces of viscous damping and q is the set of generalized coor-
dinates defined by the vector

{ }= ¼q W W W x .N
T T T

p
T

1 2

The generalized forces due to dampingvisc can be derived
from the expression

˙
= -¶

¶
 

qvisc where
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is the Rayleigh dissipation function. In equation (10), Cp

is the damping of the primary structure and ≔
( )¼C C Cdiag , , , NN11 22 , where Cnn is the damping matrix of

the nth oscillator in the PSOA. After simplification, the virtual
work done by the viscous damping will have the form

˙ ( )d d= - q CqW . 11nc visc
T

,

The equations of motion is obtained, as discussed in
appendix D, by using the  Variational Principle. The most
general finite dimensional model is then given by
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where ˆ z= +F F M ¨p p pp and

˙ ˙ ˙ ˙ · ( )zL+ + - + =    0 13T

It should be noted that this equation of motion allows for the
possibility of multi-mode approximations of each PSOA
appendage.

Also, as a part of comparison, it is known that the
actuator equations for a monolithic, distributed, linear
piezoelectric composite (such that those that arise from
piezoelectric beams, plates, or shells (see [12])) has the form

˙+ + =      ¨mono mono mono

with   , ,mono mono mono symmetric, sparse and banded.
However, these matrices are not guaranteed to have the block
zero structure of equation (12). As mentioned in the intro-
duction, it may be possible using component mode synthesis
to drive the equation to a similar form. It we can choose
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[ ] [ ]= = Y Y  I
T

D
T T

I
T

D
T T where [ ] [ ]Y Y Y Y =I D I

T
D
T T

( )diag K K,II DD and [ ] [ ] ( )Y Y Y Y = diag C C,I D I
T

D
T T

II DD , then
the more general equation can be cast in a form somewhat
similar to equation (12). However, this definition can result in
new, nonintuitive definitions of states.

5. PSOA design using frequency response function

In this section, the closed form FRF from the input force Fp to
the displacement xp of the host structure is derived when each
subordinate element is modeled with a single degree of
freedom. Next, various strategies that can be implemented in
the design of the PSOA are discussed. As it will become
evident in the current section, the resistor and the current
source in the shunt circuit are not necessary for passive
PSOAs designed for vibration attenuation. The values R−1

and i are assumed to be zero in the subsequent calculations.
Further, it is assumed that there is no base excitation to
simplify the derivation of the closed-form expression. After
making use of these assumptions, integrating equation (13)
with zero initial conditions generates an expression for volt-
age of the form

( ) · ( )= - + -    14T1

Substituting the expression for voltage into equation (12)
and taking the Laplace transform will result in the
expression
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where

ˆ ≔ ( ) ( )+ + -     . 16T1

It is evident from the expression for ̂ that the shunt
capacitance induces a change in the stiffness of the PSOA.
As shown in appendix E, the FRF can be obtained by
evaluating this transfer function along the imaginary axis,
i.e. by substituting s=iω. The nondimensionalized fre-
quency response function, obtained by dividing both sides
of equation (E.6) by the stiffness of the host structure Kp, is
expressed as
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The definitions of Mnn, Cnn, Knn and αn are available in
appendix E. Equation (17) is a principal result for elec-
tromechanical systems in this paper and should be com-
pared to equation (1) for purely mechanical systems.

5.1. Methodology for PSOA design

As discussed in the earlier sections, flat broadband attenuation
of frequency response can be achieved when the bandwidth of
the SOA is distributed around the host structure’s natural
frequency. The SOA bandwidth is defined as the range of
isolated natural frequencies from the smallest possible reso-
nant frequency to the largest resonant frequency. In this
subsection, two systematic approaches to achieve the good
designs will be discussed. The equations of motion of
piezoelectric oscillator n in the PSOA can be extracted from
equations (12) and (13). They have the form

˙ ( )+ + - = -M W C W K W B MV x¨ ¨ , 19nn n nn n nn n n n np p

˙ ( ) ˙ ( )+ + + - =B W D V
V

R
i 0. 20n

T
n n n n

n

n
n

As mentioned at the beginning of this section, the shunt cir-
cuit consists of only a capacitor for each appendage. Hence,
the terms corresponding to resistor and current source in
equations (20) can be set to zero. Further, using single mode
approximation simplifies the vectors M M C K B, , , ,nn np nn nn n

and Wn in equations (19) and (20) to scalars Mnn, Mnp, Cnn,
Knn, Bn and Wn, respectively. With these assumptions,
equations (19) and (20) simplify to

˙ ( )+ + - = -M W C W K W B V M x¨ ¨ , 21nn n nn n nn n n n np p

˙ ( ) ˙ ( )+ + =B W D V 0. 22n n n n n

Assuming zero initial conditions, equation (22) can be inte-
grated and rewritten as an expression for voltage of the form

( )= -
+ 

V
B

D
W . 23n

n

n n
n

Substituting the expression for voltage into the equation (19)
results in
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For a system represented by a second order differential equation
as shown in equation (24), the natural frequency will be
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Equation (25) gives the isolated natural frequency of an oscil-
lator in a PSOA. The system parametersMnn, Knn, Bn, Dn and n

of each oscillator are chosen in such a way that the PSOA
achieves the desired bandwidth. The following paragraphs dis-
cuss two specific strategies for making these choices.

5.2. Design by tip mass distribution

The first approach varies the tip mass to achieve the necessary
natural frequency distribution. After fixing all the parameters
except tip mass, the nondimensional mass distribution ãn can
be calculated using the relation given in equation (18). The
nondimensional mass of oscillator n is
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The tip mass distribution that can achieve the desired fre-
quency distribution can be calculated using the relation

( ) ( )= - -m I P Q, 28N
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5.3. Design by capacitance distribution

The second approach specifies stiffness properties by varying
shunt capacitance while fixing the other parameters. Similar
to the first approach, all parameters except the shunt capaci-
tance are kept constant. The nondimensional stiffness of
oscillator n

≔ ˜ ≔
ˆ

( )g b a
K

K
. 31n n n

nn

p

2

The shunt capacitance of oscillator n that can produce the
required nondimensional frequency can be calculated using

the relation

ˆ ( )=
-

-
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K K
D . 32n

n

nn nn
n

2

The advantages and the limitations of both the approaches
will be discussed along with the numerical results in
section 7.1.

6. Experimental procedure

Performance of PSOAs in attenuating resonant peaks was
tested on an aluminum beam shown in figure 6. The alumi-
num beam of dimensions 29.7 cm×7.67 cm×1.275 cm
(l×w×t) was clamped at one end, while the bimorphs were
attached at its free end. A shaker was attached to the beam at a
distance of 13.2 cm from its tip. The frequency response
functions of the structure were evaluated between the input
force measured by a PCB dynamic force transducer and the
tip-velocity measured with a single point laser vibrometer
(PSV-100). The attenuation in the resonant peaks of the
aluminum beam was monitored from the FRFs measured with
an LMS SCADAS DAQ system. Initially, baseline FRF of the
host structure (without PSOA) was recorded, which was later
compared to FRFs of the modified structure as piezoceramic
bimorphs (Part Number: T226-H4-503Y) were attached to it
in succession. The material and geometric properties of these
PSOAs are summarized in tables 2 and 3. Even though the
bimorphs have an aspect ratio that resembles a rectangular
plate rather than a beam, the fundamental frequency of the
cantilevered bimorphs is the only resonant frequency in the
bandwidth of interest. Therefore, each PSOA can be con-
sidered as a tuned single degree-of-freedom dynamic
oscillator.

The performance of four PSOAs, each with 2, 4, 6, 8
bimorphs, was studied during the experiments. The natural
frequencies of the bimorphs in the PSOAs were estimated
from the FRFs between the base acceleration and the tip
velocity of the bimorph attached to the host structure. For
these experiments, the length of the bimorphs was varied to
achieve the desired frequency distribution and tip masses
were only added once the maximum length of bimorphs was
reached. Because of the geometry of the PSOA, it was not
possible to vary tip mass alone: the size of the tip masses
would interfere with one another. Thus, the practical con-
straints in the setup play a critical role in determining the
parameters that can be varied to achieve the desired non-
dimensional frequency distribution. Theoretically, the length
and the tip mass variation should be sufficient to tune the
natural frequencies of the bimorphs. However, due to
uncertainties in the experiments, the length was fixed first, the
tip-mass (if required) was added next, and finally, the shunt
capacitance was tuned to approach the desired natural
frequency.

Furthermore, the performance of the PSOAs with open
shunt circuits was evaluated under varying dynamic proper-
ties of the host structure. Once a tip-mass was added to the
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host, the PSOAs were then re-tuned using the shunt capaci-
tances. The performance recovery achieved by the PSOAs
after shunt tuning was studied for three different tip masses,
31.60, 62.81, and 81.29 g. The results of the above-mentioned
experiments are discussed in section 8.

7. Numerical results

We simulated the response of the host structure attached to
the PSOAs that were designed using approaches presented in
the previous sections under ideal as well as non-ideal con-
ditions. To better contrast the simulation results for different
cases, the host’s structural properties, the nondimensional
frequency distribution βn, the number of substructures N in
the PSOA, and majority of the fixed parameters of the PSOA
were maintained constant for all simulations. The host
structure was assumed to have a mass =m 1000 kgp , stiff-
ness = -K 1 273 300 N mp

1 and a very low damping ratio
ζp=0.000 1, which places its natural frequency at

-35.68 rad s 1. The nondimensional frequency distribution βn
shown in figure 7 was used for the simulations and was

Figure 6. Experimental setup.

Table 2. Parameters of PSOAs used in the experiments.

No. No. of Mass Bimorph ref. Length Tip-mass Shunt Natural
bimorphs ratio (figure 17) (mm) (g) capacitance frequency (Hz)

1 2 2.30% A, B 53.28, 48.88 0, 0 220 nF, 220 nF 110.25, 123.5

2 4 4.59% C, A 55.70, 53.28, 0, 0, 470 nF, 820 nF, 94, 108.5,
B, D 48.88, 46.24 0, 0 220 nF, O 123.5, 136.5

3 6 7.13% E, C, 58.5, 55.70, 1.75, 0, 470 nF (BS), 220nF, 86.25, 95,
A, B, 53.28, 48.88, 0, 0 220 nF, 220 mF, 110.25, 119
D, F 46.24, 44.45 0, 0 220 mF, O 130.75, 142.75

4 8 9.87% G, E, 58.50, 58.50, 3.72, 1.75, O, O, 79.75, 94,
C, A, 55.70, 53.28, 0, 0 O, 220 nF, 97.25, 110.25
B, D, 48.88, 46.24, 0, 0 2.2 mF, C, 122.25, 130.75
F, H 44.45, 42.85 0, 0 O, 2.2 mF 142.75, 150

Note. (BS)—capacitance between bottom piezo layer and substrate (top piezo layer is not included in the circuit), O—shunt circuit is
open, C—shunt circuit is closed.

Table 3. Properties of bimorphs used in experiments.

Bimorph properties

Substrate material Brass
Total mass 10.3 (g)
i 31.75 (mm)
tp,i 0.27 (mm)
2ts, i 0.11 (mm)
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generated using equation (3) with Δ=0.09 and p=0.9. We
assigned the following values to the fixed parameters of the
SOA: r= + = + -C e e6.9 10 Pa, 2.3 3 kg mm

3, =N 25,
= = =L t0.5 m, 0.025 m, 2 0.003 ms , = =a b0.25 l,

= - -e0.75 l, 10.4 C m31
2, z= =- 13.3 nF m , 0.011

SOA .
In the following subsections, we will discuss the results we
obtained for the various simulation cases.

7.1. PSOA simulations under ideal conditions

In the first set of simulations, we assumed that we had perfect
knowledge of host structural properties, and the fabricated
PSOA adhered strictly to the design specifications.

When we simulated the effect of PSOA designed using
the first approach on the host structure, we obtained the fre-
quency response shown in figure 8. This result was obtained
for a piezoelectric patch thickness of =t 0.000 5 mp . As the

figure portrays, the addition of the PSOA reduces the steady
state displacement of the host structure to approximately 1%
of its actual steady state displacement at the resonant fre-
quency. This result indicates that PSOAs can indeed achieve a
reasonably flat bandwidth in the host structure’s resonant
peak region. Figure 8 also shows that the magnitude increase
outside this region is negligible. Figure 9 shows the tip mass
distribution that achieved the flat bandwidth shown in
figure 8. This is a substantial qualitative improvement over a
classical DVA.

One of the critical aspects to consider during the design
of SOAs, as well as the DVAs, is the maximum displacement
of the substructures. We plotted the frequency response from
the force input Fp to the displacement of the 13th substructure
W13, which can be seen in figure 10. As evident from the
figure, to ensure the displacement is within the mechanical

Figure 7. Nondimensional frequency distribution obtained using
equation (3) with Δ=0.09 and p=0.9.

Figure 8. Frequency response function from force input Fp to
displacement xp of a host structure with and without a PSOA. The
PSOA was designed using first approach.

Figure 9. Tip mass distribution used to achieve the frequency
response shown in figure 8.

Figure 10. Frequency response function from force applied Fp on the
host structure to the displacement W13 of the 13th substructure in the
PSOA designed using first approach.
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limitations, the maximum force input to the host structure
should not exceed 103 times the maximum displacement
allowable in the substructure.

In the second set of simulations, we tested a PSOA
designed using a distribution of capacitive shunts. We cal-
culated the total tip mass of each substructure to be

=m 0.069 44 kgi from the prescribed total mass ratio
m = ´ -e4.065 1 3. Assuming the piezoelectric thickness
as =t 0.003 mp , we obtained the capacitance distribution
shown in figure 12. Figure 11 shows the frequency response
of the host structure when the shunt capacitors followed the
distribution shown in figure 12. The primary implication of
this result is that it is possible to achieve flat attenuation using
mechanically identical oscillators. One of the advantages of
using a capacitive shunt distribution is that it allows the

designer to impose a mass ratio. Prescribing an actual mass
ratio is problematic in the first approach since the tip masses
are unknown during the initial stages of design. Hence, design
using the first approach requires an iterative process. On the
other hand, it is important to note that the PSOAs designed
using the second approach usually require piezoelectric pat-
ches whose thicknesses are no longer negligible. In such
cases, the model developed using modal shape functions is
interpreted as an approximation whose accuracy must be
validated. In some instances, individual variations of tip-mass
or the capacitance are not sufficient to generate the necessary
nondimensional frequency distribution. In such cases, multi-
ple parameters must be simultaneously varied as shown in the
experimental results.

7.2. PSOA simulations under non-ideal conditions

In the previous subsection, we demonstrated the effectiveness
and the advantages of the PSOAs through simulations. But
the simulations relied on ideal conditions which entailed
perfect knowledge of the host structure’s properties and a
high level of precision during manufacturing. These
assumptions may not be justified in some applications. Fur-
ther, the structural properties of some systems can degrade or
evolve over time which can render the SOA ineffective. In
this subsection, we will discuss the performance of the
PSOAs under non-ideal conditions and analyze the robust-
ness of PSOA systems in the presence of disorder. In the
following set of discussions, we restrict our analysis to the
PSOA designed using the first approach. The piezoelectric
patch thickness value used for this set of simulations
is =t 0.001 mp .

Assume that the host’s structural properties used in the
previous simulations are inaccurate and the actual host
structure has a stiffness which is 10% less than what we
measured. Figure 13 shows the effect of this error on the
frequency response of the host. The PSOA, which has no
capacitive shunt, is expected to generate a flat frequency
response. However, the presence of error in host structure
model induces a peak in the frequency response as shown in
figure 14. The induced peak disappeared, when we attached
the PSOA with shunts of capacitance = 1 Fn . As can be
seen in figure 14, we were able to achieve a frequency
response very similar to the expected response after shunt
tuning.

Similarly, let us assume that the fabricated PSOA
designed in section 7.1 did not comply with the design spe-
cifications. To imitate this disparity in the design and fabri-
cated SOA’s parameters, we introduced a −10% error in the
stiffness  of the SOA. The ideal PSOA that we designed in
section 7.1 attached to a shunt capacitance of = 1 Fn would
have produced a spectrally flat response as shown in
figure 15. However, the fabrication errors induce a peak in the
frequency response as shown in the same figure. After redu-
cing the shunt capacitance to = - e1 9 Fn , we were able to
achieve a frequency response that almost mimics the expected
response.

Figure 11. Frequency response function from force input Fp to the
displacement of the host structure attached to a PSOA designed
using second approach.

Figure 12. Capacitance distribution used to achieve the frequency
response shown in figure 11.
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8. Experimental results

As discussed in earlier sections, the first natural frequency of
an aluminum beam was targeted for experimentally studying
the performance of the PSOAs. Figure 16 shows the exper-
imental frequency response function of the unmodified host
(red) as well as the FRFs of the host with PSOAs. The
structural details of the oscillators in the PSOA are tabulated
in table 2. While the PSOA with two oscillators was able to
achieve a 25 dB reduction, adding more oscillators resulted in
a wider flattening of the bandwidth with at least 30 dB
attenuation. The natural frequencies of the oscillators in the
PSOA were selected such that their nondimensional fre-
quencies would follow the selected distributions shown in
figure 17. Revisiting equation (18), the nondimensional fre-
quency is expressed as the ratio of nondimensional stiffness

and nondimensional mass, which also included mass of the
subordinate oscillators. However, in figure 17, the non-
dimensional frequency is defined for experimental results as
the ratio of the damped natural frequency of the bimorphs to
the damped natural frequency of the unmodified host. This
definition is a good approximation of the theoretical non-
dimensional frequency, as it easier to estimate during
experimentation.

Based on figure 16, it is evident that increasing the
number of oscillators does not always have significant
attenuation gains, especially considering the increase in the
mass ratio at each step. However, the advantage of having
more oscillators in PSOAs comes from an increase in its
robustness. The robustness of vibration attenuation via
PSOAs is evaluated through artificially changing the host’s

Figure 13. Frequency response function from the force applied Fp to
the displacement xp of the host structure. Effect of 10% disorder in
host structure’s stiffness on the natural frequency can be seen in
this plot.

Figure 14. Frequency response function from the force applied Fp to
the displacement xp of a host structure. This plot shows that the
effect of disorder on the host structure’s response can be mitigated
by shunt tuning.

Figure 15. Frequency response function from the force applied Fp to
the displacement xp of a host structure attached to a PSOA. An error
of −10% in the stiffness of the PSOA deteriorates the host
structure’s response. However, the effect of error is eliminated after
shunt tuning.

Figure 16. Experimental FRF from base acceleration to the tip
velocity of the host structure with PSOAs.
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natural frequency by adding tip mass. Figure 18 shows the
change in the FRFs of the host structure with addition of tip
masses. Consequently, the nondimensional frequency dis-
tribution of the PSOA is not tuned for the modified host. Even
for a 15 Hz shift in natural frequency (or 13% change in
nondimensional frequency), PSOAs with four and eight
oscillators were able to attenuate the resonant peak by about
25 dB, as seen in figure 19. It can also be seen that the PSOA
with higher bandwidth (8 oscillator case) resulted in a flatter
response; thereby displaying the robustness of PSOAs.
Additionally, in case of the PSOA with eight oscillators, shunt
tuning was not necessary. On the other hand, shunt tuning
improved the performance of the PSOA with four oscillators
as shown in figure 20.

In this figure, the red colored line (no tip mass) is the
response of the original system with PSOAs. With addition of
tip masses to the host, the natural frequency of the host
decreases and the magnitude increases at lower frequencies.
As the PSOAs are tuned with shunted circuits, the magnitude
is partially recovered as pointed out in this figure. While the
dashed line correspond to open circuits, the solid lines cor-
respond to the PSOAs with closed shunts. The difference in
peak magnitudes gives a measure of the recovered perfor-
mance. Loci of the peaks of open and closed circuit lines are
also seen in figure 20. Extrapolation of these lines provides us
with an idea of how the PSOA performs with changes or
uncertainty in the dynamics of the host structure. It is
important to notice that these lines are not parallel to each
other. And this agrees with our intuition since we expect the
performance recovery ability of the PSOA to decrease with
increasing uncertainty. From a design perspective, we want
the performance recovery ability of a PSOA to be as high as

Figure 17. Nondimensional frequency distribution of the PSOAs
shown in figure 16. The oscillators in the PSOAs are referenced out
of order in the x-axis to maintain the symmetry and facilitate
comparison of the nondimensional frequency distributions. The
properties of all the oscillators can be referred from table 2 based on
the oscillator reference.

Figure 18. The variation of the host structure’s FRFs with different
tip masses. The tip masses mimic the degradation of host’s
properties over time.

Figure 19. Experimental FRF from base acceleration to the tip
velocity of the host structure with 4 and 8 oscillator PSOAs.

Figure 20. Four oscillator PSOA’s performance recovery using shunt
tuning.
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possible. This can be achieved by piezoelectric oscillator
shunt tuning, which can be achieved by increasing the
thickness of the bimorph’s piezoelectric patches. Another
approach would be to include negative capacitance [53, 83].
In situations where uncertainty can be higher, these factors
should be considered, however these discussions are beyond
the scope of the current paper and hence not addressed
rigorously.

Figure 21 shows the FRFs of the host as well as the host
with eight oscillators PSOA up to 2500 Hz. This figure is
presented here to show that the amount of modal spillover
outside the PSOA bandwidth. The performance deterioration
is minimal in the displayed frequency range. Also, the second
and third modes have been attenuated by about 10 dB. This
can be attributed to the damping of and the absorption of high
frequencies energies by the oscillators tuned to the first nat-
ural frequency.

9. Conclusions

This paper has shown that PSOAs can realize and improve on
the benefits of ordinary SOAs and tunable DVAs. They can
be used to achieve a flat response in the frequency domain
and have the ability to address uncertainties in structural
properties, at the expense of added complexity. The zero-
nonzero block structure of the coupled PSOA and host system
enables assignment of distributions to nondimensional elec-
tromechanical parameters. As shown both numerically and
experimentally in this paper, the assignment of such dis-
tributions dramatically simplifies the design process and can
eliminate the need for complex optimization methods. Fur-
thermore, the idea of performance recovery is introduced to
analyze the ability of PSOA’s performance under uncertain
structural parameters. It was shown experimentally that for
limited levels of uncertainty, passive capacitance tuning could

recover the PSOA’s flat frequency bandwidth after loss due to
uncertainty. The tuning techniques described in this paper are
limited to passive methods. As a topic of future study, it
would be of interest to analyze how active circuits can also be
implemented to tune the PSOAs adaptively.

Appendix A. Thermodynamic variational principles

Modeling of piezoelectric systems has been studied for dec-
ades, and various methods have been developed to model
linear as well as nonlinear piezoelectric systems. Even though
Newtonian techniques can be used to model piezoelectric
systems [82], variational principles provide a systematic
approach to derive consistent equations of motion when they
are subject to nontrivial boundary conditions or couples to
other electromechanical systems. In our problem the piezo-
electric systems are attached to shunt circuits with resistors
and capacitors. The variational principles for the piezoelectric
system involve a modified form of classical Hamilton’s
principle [14, 82, 84–91]. The classical form of Hamilton’s
principle [82, 92] states that any trajectory in the mechanical
configuration space must satisfy the variational identity

( ) ( )ò òd d- + =T dt W dt 0, A.1
t

t

t

t

nc
0

1

0

1

where T is the kinetic energy of the system,  is the potential
energy of the system and δWnc is the virtual work done by the
nonconservative mechanical forces acting on the system. The
variational formulations for piezoelectric systems use a
modified form of equation (A.1) and are expressed in terms of
electric enthalpy density  or the internal energy density  .
The equivalence of the two variational principles is discussed
using a simple example in [84].

A.1.  variational principle

According to the variational principle, the actual motion of
a piezoelectric system attached to a shunt circuit with a
resistor, capacitor and current source in parallel must satisfy
the variational identity

( ) ( )ò òd d- + = T dt W dt 0 A.2
t

t

t

t

nc,
0

1

0

1

for all admissible variations of the actual electromechanical
trajectory. In equation (A.2), T is the kinetic energy and  is
the electromechanical potential. It includes the potential
energy of linearly elastic components and the contribution of
the electrical enthalpy. The term dWnc is the nonconservative
virtual work done by the electromechanical loads on the
system. The contribution of electric enthalpy to the electro-
mechanical potential is expressed in the form

≔ ( )ò åW -
W

   d V
1

2
. A.3

i
i i

2

In equation (A.3),  is the electric enthalpy density of the
piezoelectric continua W , i is the capacitance of the ith
capacitor in the shunt circuit, and Vi is the voltage across the

Figure 21. Broadband experimental FRF from base acceleration to
the tip velocity of the host structure with 8 oscillator PSOA. The
FRF shows that the modal spillover across a large frequency range is
minimal. Additionally, the second and the third natural frequencies
are also attenuated.
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ith shunt circuit. The virtual work done by the non-
conservative terms in a piezoelectric system attached to a
shunt circuit has the form

˙
( )å åd d dl

l
dl= + -W W i

R
, A.4nc nc

j
j j

k

k

k
k,

where δWnc is the virtual work term shown in equation (A.1)
and λk is the flux linkage across the shunt circuit. The terms

dlå ij j j and
˙
dl-å l

k R k
k

k
represent the virtual work contribu-

tions from the current source with current output ik and the
resistor with resistance Rk, respectively. The equations of
motion obtained using this variational principle are expressed
in terms of displacements and voltage/flux linkage as the
generalized coordinates.

A.2.  variational principle

The second variational principle used in this paper is the 
variational principle. It is expressed in terms of internal
energy density of the system. According to this principle, the
actual motion of a electromechanical system must satisfy the
variational statement

( ) ( )ò òd d- + = T dt W dt 0 A.5
t

t

t

t

nc,
0

1

0

1

for all admissible variations of the actual electromechanical
trajectory. In equation (A.5), T is the kinetic energy,  is the
electromechanical potential defined in terms of the internal
energy density and d W nc, is the nonconservative work done
by the system. The expression for  has the form

≔ ( )ò åW +
W

 


 d Q
1

2

1
, A.6

i i
i
2

where  is the internal energy density of the piezoelectric
continua W , i is the capacitance of the ith capacitor in the
shunt circuit, and Qi is the charge flowing through the shunt
circuit. The virtual work done d W nc, is expressed in the form

˙ ( )å åd d d d= + -W W V Q R Q Q , A.7nc nc
j

j j
k

k k k,

where δWnc is the virtual work done shown in equation (A.1)
and Qk is the charge flowing through the shunt circuit. The
terms då V Qj j j and ˙ d-å R Q Qk k k k represent the virtual work
contributions from the voltage source Vk and the resistor of
resistance Rk respectively. The equations of motion derived
using this variational principle are expressed in terms of the
displacements and charge as the generalized coordinates.

Appendix B. Kinetic energy of a PSOA

The kinetic energy of a PSOA attached to a host structure is
given in equation (4). Using separation of variables and
Galerkin approximation, an approximation of the transverse
displacement of each appendage is constructed as ( ) =w x t,i

( ) ( ) ( ) ( )Yå Y == Wx W t x tj
n

ij ij i
T

i1 . Substitution of the approx-
imation into the expression for kinetic energy of the

distributed mass of each appendage results in
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Similarly, substitution of the approximation of the transverse
displacement into the expression for kinetic energy of the tip
mass of each appendage results in
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Thus, the total kinetic energy of the system is expressed as
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Appendix C. Electromechanical potential of a PSOA

The total electromechanical potential of the system shown in
figure 4 can be calculated using equation (A.3). However, as
evident from the electric enthalpy density expression given in
equation (6), the electric field Ei has to be calculated before
proceeding further. The curl of the electric field across the
bimorph beam is approximated as zero in the electrostatic
approximation in linear piezoelectricity. Hence, electric field
is expressed in the form ( ) ≔ - df

d
E x y z, ,i i i i z

i

i
, where fi is the

electric potential function. From the assumption of linear
variation of potential across the piezoelectric patch, it follows
that

⎧
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In equation (C.1), Vi and tp,i are the voltage across and
thickness of the piezoelectric patch of the ith oscillator in the
PSOA. The electromechanical potential can now be expressed
using equation (A.3). It has the form
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Assuming the material stiffness to be uniform in the y and z
direction, the term ò òC z dy dzi

E
i i i
2 simplifies to C Ii

E
i where Ii

is the area moment of inertia of piezoelectric beam i. Defining
the terms ≔k k k-i Ti Bi with ≔ ò òk z dy dzTi A i i i

T
for the top

piezoelectric patch and ≔ ò òk z dy dzB A i i ii
B

for the bottom

piezoelectric patch simplifies the expression for the electro-
mechanical potential to
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As shown in figure 5, ai and bi in the above equation are the
left and right piezoelectric patch coordinates, respectively.
The piezoelectric cross sectional area is defined as

≔ · A tp i p i i, , , where tp,i andi are the thickness and width
of the piezoelectric patch, respectively. The function [ ]c a b,i i

in
the equation (C.3) is called the characteristic function and is
defined as
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Substituting the Galerkin approximation for transverse
displacement of each substructure ( ) ( )= å Y ==w x W ti i

n
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Appendix D. Host structure with a PSOA model

In this section, the steps involved in deriving the equation of
motion of a PSOA attached to a host structure are given.
Further simplification of the above expressions in
equations (4), (7) and (9) is achieved by introducing the block
vectors and matrices
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The final equation for kinetic energy, electromechanical
potential energy and virtual work done then has the form
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The  variational principle can now be applied to derive the
equations of motion of host structure attached to the PSOA.
Recall that the equations of motion must satisfy the  var-
iational principle we discussed in Subsection appendix A.1.
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After substituting T , and δWnc into equation (A.2), the
variational statement yields
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The base motion z is a prescribed input for this system.
Hence, we have ( )zd d- =x xp p. Rearranging the terms in
the above expression and integration by parts results in the
variational expression
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which must hold for all admissible variations d dx ,p and
dL. It is shown in [82] that the variational boundary condi-
tions above are zero. Finally, the equations of motion of the
system under consideration are
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Appendix E. Closed form expression for frequency
response function

The current section is focused on deriving the frequency
response function from the force input Fp to the displacement
xp of the primary structure. The transfer function from the
force input to the displacement of a host structure attached to
a PSOA with capacitive shunt is given by equation (15).
Evaluating this transfer function along the imaginary axis can

find the required FRF. However, we seek a FRF that is similar
in form to the expression in equation (1) [11]. To achieve this,
we introduce a change of variables
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in equation (15) and premultiply the same equation by ΓT.
This change in variables removes the mass coupling in the
transfer function. In equation (E.1), ≔a - p

1 , and s is
analogous to the absolute displacement of the piezoelectric
beam. After the change in variables in equation (15), we
have
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where the terms ¯ ¯ ¯M C K, ,pp p p have the definitions ¯ ≔Mpp

( ) ¯ ≔ ( ) ¯ ≔ ( ˆ )a a a a a- + +  M C C K K, ,pp
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p p p
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p p
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From equation (E.2), we have the relations

( ˆ ) ( ˆ ) ( )a= + + +-     s s s x , E.3s p
2 1
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Equation (E.3) represents the relation between the motion of
the primary mass and motion of the substructures. The
transfer function from the applied force to the displacement
of the primary structure is obtained by substituting
equation (E.3) into equation (E.4). As is well known, using
modal or Fourier shape functions yields matrices and sub-
matrices    , , , and  that are diagonal. As defined in
the earlier sections, the elements of    , , ,p and  are
M M K C, , ,nn np nn nn and Bn, respectively. With single mode
approximation these elements reduce to scalars which are
denoted by Mnn, Mnp, Knn, Cnn and Bn, respectively. With
these assumptions, it is easier to derive the transfer function
which is given by
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1

The transfer function in the case of multi-mode approx-
imation will look very similar to equation (E.5) and can be
derived using the same procedure shown above. Substituting

w=s i into equation (E.5) results in an expression for the
frequency response function
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