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Abstract

Dynamic vibration absorbers (DVAs) and tuned mass-dampers (TVAs) have wide-spread applications in
the aerospace industry, the automotive sector, and in civil engineering structures. There are numerous
designs of active and passive vibration attenuators or absorbers that isolate structural vibrations at or
around the desired frequency. All these design approaches are fundamentally different ways to modify
and tune the placement of the resonant frequencies of the host structure. The current work presents
a novel method to passively attenuate vibration over a broad frequency bandwidth in the presence of
uncertainty. An array of linear oscillators, also referred to as subordinate oscillator arrays (SOAs), are
attached to a two-degrees-of-freedom structure to produce an attenuated broadband frequency response
around a target frequency. SOAs can also be interpreted as an array of DVAs and in some categories, they
can be considered as an approach to meta-structures.

Another objective of the current work is to develop a hands-on approach to extend classroom teaching
of vibration-isolation using SOAs made out of fettuccine strands and modeling clay. The frequencies of
the oscillators in the array are tuned by varying the length of each strand and the mass of the modeling clay
attached to its tip. Uncertainty in dynamic properties of such oscillators often results in mistuned SOAs
with non-uniform frequency response function. Therefore, designing and testing fettuccine-based SOAs
allows students to handle cases when structural uncertainties arise in engineering systems. Additionally,
some of the work in the field of meta-structures can be modeled and represented by SOAs and this will
provide a straight forward way to teach students some of these contemporary concepts.

Keywords: Vibration Isolation, Subordinate Oscillator Array, Fettuccine Pasta, Modeling Clay,
Structural Dynamics, Education, Dynamic Vibration Absorbers

1. Introduction

For more than a century, dynamic vibration absorbers (DVAs) have attenuated vibratory response
near the natural frequency of engineering structures [1]. The fundamental idea behind DVAs is to im-
prove the dynamics close to the resonance frequency of the host structure by securing a secondary dy-
namic system (a subordinate system) tuned to this frequency. Different applications have embraced and
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adopted subordinate systems with tuned spring-mass systems or tuned dynamic flywheels. Although
these subordinate-oscillators have been widely employed in engineering structures, one limitation arises
from its dependence on tuning to a specific frequency. As most linear DVAs are tuned to a frequency,
the effectiveness of the dynamic absorber is limited to a narrow bandwidth. This can be impractical if
(i) the natural frequency of the host structure changes, for instance, with operational loads, (ii) there is a
mismatch between the resonant frequency of the structure and the tuned frequency of the DVA, and (iii)
the host structure is under a broadband dynamic load. To address some of these drawbacks, researchers
have developed tunable dynamic absorbers, nonlinear DVAs, active absorbers, and subordinate oscillator
arrays (SOAs).

Subordinate oscillator arrays can be viewed as an array of linear DVAs that achieve vibration atten-
uation over a broad range of frequencies [2–6]. The isolated natural frequencies of the oscillators in
the SOA are spaced around the natural frequencies of the host structure to achieve broadband attenua-
tion. Various design approaches can accomplish this goal. The most straightforward method involves the
placement of the isolated natural frequencies around the host structure’s natural frequency in a random
manner until the necessary attenuation is achieved over the required frequency range. A different ap-
proach would involve adding one oscillator at a time into the array corresponding to the highest observed
peak in the desired frequency range and reevaluating the frequency response of the system each time.
Naturally, this is a slower approach. However, it is highly efficient, and the SOAs designed using this
approach have considerable fewer number of oscillators. Vignola et al. [6] proposed a method in which
discrete distributions are assigned to the natural frequencies of the oscillators. As opposed to choosing
individual parameters of oscillators, assigning distributions reduces the number of parameters needed to
achieve the desired frequency distribution.

The performance of an SOA is highly dependent on the host and SOA uncertainty as well as the
hosts structural properties. Vignola et al. [7] studied the effect of disorder on the SOA and showed that
the SOAs performance deteriorated with an increasing error in the properties. The design approaches
mentioned above do not take uncertainty in structural properties into consideration during the initial
design phase. Arrays with piezoelectric oscillators, studied in [8–10], can adapt their effective structural
properties in the presence of uncertainties. However, such an array of oscillators are complex to design
and build when compared to ordinary SOAs.

In this paper, a design approach is adapted from the second method discussed above, that takes the
uncertainties of the system into consideration and corrects the model to account for the disorder in the
system. The effectiveness of this approach is tested using experiments on a two degree of freedom system,
a physical model that mimics a two-story building. Fettuccine strands are used as cantilever beams for
oscillators in the array. Since Young’s modulus of fettuccine can vary from strand to strand, they make a
suitable and inexpensive test subject for our approach.

Another objective of the present work is to bridge the gap between the research and the teaching
communities via hands-on experimentation. Although many structural dynamics textbooks have dis-
cussed vibration absorbers [11, 12], there is a need for pedagogical clarity so that students can have a
deeper understanding and appreciation of the underlying concepts. A hands-on approach that exempli-
fies the nuances of experimentally realizing a vibration absorber should be part of a traditional classroom
learning process in vibrations. Therefore, the focus of the current effort is also to develop a strategy
that assists in teaching principles behind vibration attenuation by extending classroom lectures through
hands-on experience.

It should also be noted that the novel concepts of meta-structures can also be explained via this very
simple example. For instance, Inman et al. develop a set of meta-structures in [13] that are simply a
more sophisticated approach to the same concept. Although meta-structures can be elusive for entry
level teaching and classes, an example such as this can relate the simple concepts of DVA and extend

2



2-DOF Host Structure Host Structure with SOAs 3D Rendering of the Host 
Structure with SOAs

(a) 2-DOF Host Structure2-DOF Host Structure Host Structure with SOAs 3D Rendering of the Host 
Structure with SOAs

(b) Host Structure with SOAs2-DOF Host Structure Host Structure with SOAs 3D Rendering of the Host 
Structure with SOAs

(c) 3D rendering of the structure

Figure 1: Host Structure

them to meta-structures.
As a part of this goal, SOAs are developed using non-conventional, yet mundane materials such as

fettuccine and modeling clay. In designing tuned oscillators from such constituents, students have to
apply theoretical formulations first to estimate approximate material properties and design oscillators to
a particular frequency. The next step is to experimentally measure the oscillator’s fundamental frequency,
and observe the presence of uncertainty in the boundary conditions and material properties. This gives
the students a chance to further tune the frequency by either reducing the length of the pasta or by adding
tip-mass. Such an innovative and engaging hands-on approach compliments some of the recent efforts
by the structural community to enhance the learning experience by using 3D printed technology [14] for
teaching concepts of structural dynamics [15–18] through engaging experiments.

2. Analytical model of a 2-DOF host structure

This section presents the governing equations that model the 2-DOF structure shown in Figure 1.
In later sections, SOAs are designed to target the natural frequencies of this representation of a two-
story building. Figure 1 displays a 3D rendering of the host structure, along with a spring-mass-damper
description of the structure. The 2-DOF system is modeled via a Lagrangian approach by determining
the kinetic and potential energy of the host structure. Typically for a structure as in Figure 1, inertial mass
is assumed to be approximately equal to the two-floor masses. Therefore, the total kinetic energy of this
setup is given by

T = Tmass1 + Tmass2 =
1
2

m1 ẋ2
1(t) +

1
2

m2 ẋ2
2(t), (1)

where x1 and x2 are the displacements of the two inertial masses (m1 and m2) when its base is perturbed
by a displacement z; also, (˙) represents the time derivative d

dt (). The expression for the potential energy
of the host structure can be expressed using

U =
1
2

k1 (x2 − z)2 +
1
2

k2 (x2 − x1)2 , (2)
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where k1 and k2 are the effective stiffnesses of levels 1 and 2 of the two story model, respectively. Each
level is modeled as four clamped-guided beams in parallel. Thus, the effective stiffness has the relation

ki =
12EI

L3
i

N, i = 1, 2 and N = 4, (3)

where E and I are the Young’s modulus and the moment of inertia of the four supporting beams, re-
spectively. Following the Lagrangian approach, the equations of motion of the host structure take the
following form [

m1 0
0 m2

]
︸     ︷︷     ︸

M

{
ẍ1

ẍ2

}
+

[
k1 −k1

−k1 k1 + k2

]
︸            ︷︷            ︸

K

{
x1

x2

}
=

[
0
k2

]
︸︷︷︸
B

{
z
}
, (4)

where B is the control influence matrix. Analytically, the transfer functions have the form

X(ı̇ω)
Z(ı̇ω)

=
(
−Mω2 + ı̇Cω + K

)−1
B, (5)

where the damping matrix C is obtained from the experimental modal damping values following the
procedure shown in [11]. However, if the supporting columns also contribute to the mass of the structure,
the inertial contribution of the supporting columns should also be included in the mass matrix (M).
Therefore, the kinetic energy of the four columns supporting the ith story is given by

Tleveli = N
(
1
2
ρA

∫ L2

0
(αi ẋi−1 + βi ẋi)2dy

)
, (6)

=
1
2

N
[
ρA

∫ Li

0
α2

i dy
]

︸               ︷︷               ︸
mb

i1

ẋ2
i−1 + N

[
ρA

∫ Li

0
αiβidy

]
︸                 ︷︷                 ︸

mb
i2

ẋi−1 ẋi +
1
2

N
[
ρA

∫ Li

0
β2

i dy
]

︸               ︷︷               ︸
mb

i3

ẋ2
i ,

=
1
2
m

b
i1 ẋ2

i−1 +mb
i2 ẋi−1 ẋi +

1
2
m

b
i3 ẋ2

i , i = 1, 2

where

αi =

[
1 −

(3Li − 2y)y2

L3
i

]
, βi =

[
(3Li − 2y)y2

L3
i

]
.

The total kinetic energy of the 2-DOF setup is given by

T = Tmass1 + Tlevel1 + Tmass2 + Tlevel2 ,

=
1
2

m1 ẋ2
1(t) +

1
2
m

b
11ż2 +mb

12żẋ1 +
1
2
m

b
13 ẋ2

1

+
1
2

m2 ẋ2
2(t) +

1
2
m

b
21 ẋ2

1 +mb
22 ẋ1 ẋ2 +

1
2
m

b
23 ẋ2

2.

The expressions for the updated kinetic energy and the potential energy can be substituted into the La-
grange equation to obtain the governing equations of the system. The updated equations of motion of the
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host structure are [
m11 m12

m21 m22

] {
ẍ1

ẍ2

}
+

[
k1 −k1

−k1 k1 + k2

] {
x1

x2

}
=

[
0 0
k2 −m

b
12

]
︸       ︷︷       ︸

B

{
z
z̈

}
, (7)

withm11 = mb
11 + m1 +mb

21,m12 = m21 = mb
22, andm22 = mb

23 + m2.

3. Analytical Model of Subordinate Oscillators Arrays

Dynamic vibration absorbers (DVAs) are ancillary systems attached to a host structure to absorb
undesired vibrations of the structure. Typically, DVAs are modeled as a single degree of freedom linear
oscillators, as each DVA is tuned to operate primarily at its fundamental natural frequency. When an array
of linear oscillators target a frequency range, then the array is referred to as a Subordinate Oscillator Array
(SOA). The performance of the SOA depends primarily on the placement of the fundamental natural
frequency of each oscillators in the SOA with respect to that of the host structure.

A lumped-mass model of the SOAs attached to each mass of the 2-DOF system is shown in Figure 1.
The equations of motion of an SOA connected to mass (mi) will take a form of

M1 j ẍ1 j + C1 j ẋ1 j −C1 j ẋ1 + K1 jx1 j −K1 jx1 = 0, (8)
M2 j ẍ2 j + C2 j ẋ2 j −C2 j ẋ2 + K2 jx2 j −K2 jx2 = 0,

where x1 j and x2 j represent the vector of displacements of the oscillators in the SOAs associated to the
jth natural frequency that are attached to masses 1, 2, respectively. In the above equations, Mi j, Ci j and
Ki j represents mass, modal damping, and stiffness vectors of the individual oscillators attached to the

primary mass i and associated with natural frequency j, respectively. If X =
{
xT

11,x
T
12,x

T
21,x

T
22, x1, x2

}T

denotes the vector of states related to the SOAs, the governing equations can be expressed in the form

MẌ + CẊ + KX = F, (9)

with

M =


diag(M11)

diag(M22)
m11 m12

m21 m22

 , F =


0
0
0

k2z −mb
12z̈

 ,

C =


diag(C11) −C11 0

diag(C22) 0 −C22

−C11 0 c11 +
∑

C11n c12

0 −C22 c21 c22 +
∑

C22n

 ,

K =


diag(K11) −K11 0

diag(K22) 0 −K22

−K11 0 k2 +
∑

K11n −k2

0 −K22 −k2 k1 + k2 +
∑

K22n

 .
In succeeding sections, dynamic model of the host and the subordinate system are validated through
experimental testing.
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4. Testing, Parameter Estimation and Host Model Validation

This section validates the host structure model via experiments. In [7], Vignola et al. explain the
importance of having precise estimates of natural frequencies of the host structure for accurately design-
ing SOAs. Therefore, before proceeding to the design of SOAs, it is crucial to update (if required) and
validate the host structure’s model. For this reason, the 2-DOF structure shown in Figure 2 is treated as
the host structure whose resonant frequencies are targeted with the dynamic oscillators. In this structure,
two wooden blocks are supported by four aluminum posts that are attached to a steel base plate. The
dimensions and the blueprint of the host structure are provided in the supplementary documents. Addi-
tionally, some of the significant geometric parameters of the host structure are tabulated in Tables 1 and
2.

Table 1: Geometric properties of the host structure

Parameter Measured Tuned

Mass of first block (m1) 0.259 kg
Mass of second block (m2) 0.258 kg

Width of Al columns 0.5 in
Height of Al columns 1/16 in
Dist. b/w base and m2 ∼ 26.035 ± 0.635 cm (∼ 10.25 ± 0.25 in) 26.48 cm
Dist. b/w m1 and m2 ∼ 26.035 ± 0.635 cm (∼ 10.25 ± 0.25 in) 25.62 cm

Table 2: Material and dynamic properties of the host structure

Parameter Estimates Tuned Experimental Error

E of Aluminum 69 GPa
ρ of Aluminum 2700 kg/m3

First natural frequency 4.94 Hz 4.76 Hz 4.76 Hz
Second natural frequency 12.99 Hz 12.87 Hz 12.87 Hz

Experimental frequency response functions (FRFs) are measured by exciting the base of the structure
with an APS (Electro-SEIS 113) shaker, as shown in Figure 2. With accelerometers attached to the base
plate and the two wooden blocks, an LMS SCADAS Mobile data acquisition system was used to measure
the two transmissibility transfer functions. Subsequently, the Polymax algorithm was used to determine
the natural frequencies and the corresponding modal damping ratios from the measured FRFs. The
dynamic model discussed in the previous section was compared with the experimental results. Then, the
column lengths in the model were updated so that the model represents the experiment more accurately.

Engineering judgment plays a vital role in updating the model by selecting parameters that are the
sources of uncertainty. Joints add significant complexity in representing the dynamics of the structure
as a lumped-mass system. For instance, if any one of the supporting columns is not rigidly secured,
its stiffness contribution is reduced; as a result, experiments yield lower results of the host’s natural
frequencies. The other source of uncertainty comes from the effective length of the supporting column
between any two levels. Although the length of the support structure affects both the mass and the
stiffness matrices, its contribution to the stiffness matrix is dominant. This is due to the cubic relationship
in Eq. 3.
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Figure 2: Host Structure Setup

In a classroom, such uncertainties in the experimental setup provide an opportunity for students to
develop intuition through trial and error. In the experimental setup, the mass of the two wooden blocks
and the cross-sectional dimensions of the beam can be measured. However, in the current setup, the
uncertainty in measuring the effective length of the supporting posts comes from the thickness of the two
wooden blocks attached to it. Therefore, the length of the posts is one parameter that is updated in the
model by defining a cost function in terms of experimental and simulated natural frequencies:

J1 = ||ωexp,1 − ωmodel,1(L1, L2)||2 + ||ωexp,2 − ωmodel,2(L1, L2)||2. (10)

The column lengths L1 and L2 that minimize the above cost function are the effective lengths of the posts.
An iterative approach is adopted to estimate the optimal lengths by searching in the range of uncertainty.
Finally, the updated properties of the host structure are tabulated in Table 1. Also, the modal damping
estimates used in the simulations are 0.2% and 0.35% for the first and the second models, respectively.
Table 2 summarizes the characteristics of the dynamic model before and after updating the equivalent
stiffness and modal damping.

5. Testing, Parameter Estimation and SOA Design

This section discusses the design of SOAs to attenuate the dynamics of the 2-DOF structure shown in
Figure 2. These SOAs are developed using fettuccine strands and modeling clay. While the cantilevered
fettuccine strand predominately contributes to the stiffness of each oscillator, the modeling clay attached
to its tip allows for fine-tuning of its fundamental frequency. In a classroom, fettuccine and modeling clay
are excellent and affordable candidates for teaching the concepts of vibration absorption as they capture
students’ attention and keep them engaged throughout the experimentation. As the chosen materials are
unconventional candidates, the material properties are unknown and non-homogeneous, and therefore,
the analysis of the system has multiple levels of complexity. Additionally, the variation in the dynamic
properties between fettuccine strands gives students an opportunity to deal with uncertainty.

Once the nominal material properties are estimated, the next step is to design an oscillator tuned to a
particular frequency. If an oscillator is tuned to the natural frequency of a host structure, the correspond-
ing peak in the frequency response function (FRF) splits into two newer peaks, and an anti-resonant
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Figure 3: Experimental and simulated FRFs of the host structure.

valley appears at the tuned frequency. A DVA is an example of such an oscillator which, when tuned to
the host’s natural frequency, absorbs the host’s energy and creates a new FRF with two peaks. However,
the dynamics of the system can deteriorate when the modified structure is under broadband excitation,
thereby activating the two newer resonant peaks. As a result, the natural progression of this discus-
sion seeks an array of oscillators (SOAs) that attenuates the dynamic response over a broader frequency
bandwidth.

Designing and implementing SOAs using fettuccine strands in a classroom is very engaging as it
is highly intuitive to tune oscillators. However, students would realize that for precise tuning of each
oscillator, it is necessary to estimate the accurate dynamic properties of individual fettuccine strands. In
this regard, towards the end of this section, an iterative process is proposed to develop better performing
SOAs under the presence of uncertainties. The rest of this section provides details of each of these steps
along with corresponding experimental results.

5.1. Estimation of material properties of Fettuccine strands
In this section, the average Young’s modulus of oscillators is experimentally estimated using the

dynamics test setup shown in Figure 4b. The tip response of the cantilevered fettuccine strand (without
any tip-mass) is measured with a PSV-100 laser vibrometer as the base is mounted to an APS shaker. The
resonant frequency of this strand is then determined from the experimental FRF. The Young’s modulus of
the fettuccine strands are estimated from the measured resonant frequency (ω) and the average material
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density (ρ) using the analytical relationship [11] given by

ω =

√
3EI

(0.24ρAL)L3 , (11)

where the geometric parameters are length (L), cross-sectional area (A) and moment-of-inertia (I). Ta-
ble 3 presents the average structural parameters of fettuccine strands. Figure 4a shows the frequency
response function of a fettuccine strand as its length is varied, and Table 3 lists the corresponding nat-
ural frequencies and the damping ratios. Based on these experimental results, one can see that Young’s
modulus of the fettuccine strand varies from 2.14 × 109Pa to 2.63 × 109Pa. Since the other parameters
do not show as significant a variation as the Young’s Modulus, uncertainties in the FRFs can be primarily
attributed to the variance in Young’s modulus.
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Figure 4: (a) Experimental FRFs of fettuccine strands of varying lengths (Input: acceleration of the base, Output: Tip-velocity
of the fettuccine strand), (b) Dynamic test of a single cantilevered fettuccine strand

Table 3: Measured and estimated physical parameters of fettuccine strands

DVA length Exp. η Exp. ζ Estimated E Parameter Value

8 in 8.35045 Hz 1.76494% 2.5851 GPa Average Thickness 1.4 mm

7 in 11.0095 Hz 1.8529% 2.634 GPa Average Width 5.6 mm

6 in 13.5171 Hz 1.89777% 2.1432 GPa Average Density 1115.8 kg/m3

5 in 19.7543 Hz 2.31913% 2.2075 GPa Area Moment of Inertia 1.29e − 12 m4

µ = 1.9587% µ = 2.3925 GPa

µ is mean estimate, η - natural frequency, ζ - modal damping ratio and E - Young’s modulus

5.2. Numerical simulation of SOAs
Before proceeding to the experimental implementation of SOAs, the dynamics of the SOAs are simu-

lated using an array of identical fettuccine strands with Young’s modulus and modal damping ratio equal
to the experimental mean estimate of 2.39 GPa and 1.95 %, respectively. The other parameters of the
oscillators are presented in Table 4.
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Figure 5: Simulated FRFs of the host structure as oscillators are added to build the SOA at (a) the first resonant peak, and (b)
the second resonant peak

Figure 5 shows the FRF of the host structure with and without oscillators. As oscillators are added
one at a time, the magnitude of the FRF is reducing over a broader frequency bandwidth. SOAs with
three oscillators is able to flatten the FRF over the frequency bandwidth of interest. Typically, a tuned
oscillator targets the peak frequency of the system. However, sometimes, due to practical limitations,
they are mistuned, i.e., the peak frequency and the target frequency are not equal to each other. Table 4
presents the selected target and peak frequencies of all oscillators in the two SOAs. The peak’s magnitude
and the vibration attenuation achieved in each iteration is also shown in Figure 5. After addition of three
oscillators, the (minimum) vibration attenuation achieved are approximately 25 dB and 18 dB at the first
and second natural frequency bands, respectively. Figure 5 also shows that the addition of SOAs has
resulted in modal spillover. In other words, there is a minimal increase in magnitude at some of the
natural frequencies around the host’s initial peak. However, this increase in magnitude is negligible when
compared to the extent of attenuation achieved by using SOAs.

As seen in Figure 5a, oscillator OSC-1a tuned to peak frequency splits the resonant peak into two
peaks of equal magnitudes. However, in Figure 5b oscillator OSC-2a is mistuned and as a result, it
splits the resonant peak into two peaks of differing magnitudes. Similar behavior is observed with other
oscillators in the two SOAs. It is also interesting to note that with the current approach targeting peak
frequencies, even number of oscillators or mistuned oscillators in the SOA results in FRFs that have
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Table 4: Peak magnitude and attenuation achieved by SOAs as observed in numerical simulations.

Natural Freq. Oscillator (OSC)
Frequency Max Peak Magnitude Max Peak Attenuation

(SOA) Max Peak Target Mass 1 Mass 2 Mass 1 Mass 2

1st No OSC 4.76 Hz 4.76 Hz 45.6 dB 49.29 dB - -
OSC - 1a 4.92 Hz 4.92 Hz 28.25 dB 31.95 dB 17.35 dB 17.34 dB

(SOA-1)
OSC - 1a, 1b 4.56 Hz 4.58 Hz 26.37 dB 30.01 dB 19.23 dB 19.28 dB

OSC - 1a, 1b, 1c 4.65 Hz - 21.03 dB 24.65 dB 24.57 dB 24.64 dB

2nd No OSC 12.86 Hz 12.76 Hz 31.09 dB 28.14 dB - -
OSC - 2a 12.5 Hz 12.55 Hz 18.81 dB 16.37 dB 12.28 dB 11.77 dB

(SOA-2)
OSC - 2a, 2b 13.20 Hz 13.20 Hz 17.84 dB 15.6 dB 13.25 dB 12.54 dB

OSC - 2a, 2b, 2c 12.2 Hz - 12.95 dB 10.3 dB 18.14 dB 17.84 dB

uneven peak magnitudes. Thus, the question arises whether SOAs can be implemented practically and
the next subsection discusses this question using experimental results.

5.3. Designing SOAs using oscillators with uncertain material properties
This section studies the performance of SOAs when the variation in Young’s modulus of the fettuccine

strands is neglected and oscillators based on nominal material properties estimated in the previous section
are used to construct the SOAs. Fettuccine based oscillators are added to the host structure one at a time,
and the tip-mass is calculated using the nominal Young’s modulus to tune the oscillator to the peak
frequency. However, due to the uncertainty, the oscillator’s natural frequency may not match the target
frequency. Rather than updating the tip-mass, a new oscillator is added, and the process is repeated
until a flat FRF is achieved. The details of the tip-masses, the lengths of the fettuccine stands and the
target frequencies (η) are tabulated for the two SOAs in Table 5. Eventually, two SOAs of nine and
six oscillators resulted in a flat FRF at the first and the second resonant frequencies of the host structure.
SOA-1 and SOA-2 are attached to the top and the bottom wooden blocks, respectively as shown in Figure
6b. Figure 6a shows the FRF of the modified structure with SOAs. This figure shows that with SOAs, the
dynamic response of the host structure can be attenuated over a broad frequency bandwidth in spite of
uncertain material properties. However, the attenuated response is uneven with a nonuniform magnitude
in its frequency bandwidth. If precise dynamic properties of the oscillators are known, the resulting
attenuated response will result in uniform magnitude. Also, a comparable degree of attenuation could
be achieved with a fewer number of oscillators. In the next section, an iterative approach is proposed to
update fettuccine’s material properties, thereby reducing the uncertainties while designing SOAs.

5.4. Designing SOAs using oscillators by updating material properties
The flowchart in Figure 7 presents a generic approach to design SOAs in the presence of uncertainties.

The design approach is primarily based on the idea of estimating the natural frequency of a substructure
after it is attached to a host/primary structure. In this paper, the analysis is restricted to a simplified
method when the approximate range of variation of the parameter is known. From preliminary experi-
ments conducted, it is observed that the uncertainty in the substructure arose primarily due to variance in
Young’s modulus of the material. The approximate variation of the Young’s Modulus assessed in previ-
ous sections is used here. Furthermore, this method inherently assumes that the mass of each subordinate
oscillator is negligible when compared to that of the host structure.

The first step in the design process involves the selection of a frequency band with a resonant peak.
Then a single oscillator is attached such that its natural frequency is higher than the selected frequency
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Figure 6: Vibration attenuation using SOAs made of oscillators
with unknown material properties

Table 5: Properties and target frequencies of the oscillators with uncertain Young’s modulus that achieved flat band attenuation
of the host

SOA-1

Oscillator OSC-1a OSC-1b OSC-1c OSC-1d OSC-1e OSC-1f OSC-1h OSC-1h OSC-1i
Length 8 in 8 in 8 in 8 in 8 in 8 in 8 in 8 in 8 in

Tip-mass 0.80 g 1.00 g 1.03 g 0.83 g 1.27 g 1.35 g 1.36 g 0.71 g 0.65 g

Target η 4.78 Hz 4.70 Hz 4.60 Hz 5.04 Hz 4.47 Hz 4.39 Hz 4.4 Hz 5.21 Hz 5.3 Hz

SOA-2

Oscillator OSC-2a OSC-2b OSC-2c OSC-2d OSC-2e OSC-2f
Length 5 in 5 in 5 in 5 in 5 in 5 in

Target η 12.98 Hz 13.14 Hz 12.47 Hz 12.31 Hz 13.53 Hz 12.17 Hz

band. The assumptions mentioned earlier become relevant in this step. After attaching the fettuccine
strand (without tip-mass) to the host structure, the effective natural frequency of the substructure can be
estimated by placing an accelerometer at the base of the oscillator and measuring its tip response. Even
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Figure 7: Flow chart of the iterative procedure followed to estimate material properties of fettuccine strands and therefore
design oscillators tuned to the desired target frequency.

though the substructure is attached to the host, the natural frequency of the substructure can be identified
from the frequency response of the substructure measured between its base and its tip. However, in cases
where the dynamics of the oscillator cannot be directly measured, the FRF between the excitation and
the response of the host structure is sufficient. For simple structures such as the one under study, care is
taken such that the natural frequency of the fettuccine strands (without tip-mass) is sufficiently away from
the two frequency bandwidth of interest. In such a scenario, a new peak is introduced in the frequency
response function of the host structure. For instance, an untuned fettuccine strand of 8 in has natural
frequency around 8.5Hz, which does not lie in the two frequency bandwidths of interest [ 4-5.5 ] Hz and
[ 12-14 ] Hz.

Due to the low mass-ratio as well the fact that the natural frequency of the substructure is significantly
different from that of the host, the frequency corresponding to the induced peak can be considered as a
good approximation of the substructure’s natural frequency. This is then tuned to target the peak at 4.76
Hz by attaching a calculated tip-mass of 0.914 g. Table 4 has further details of all oscillators, where
the natural frequencies of the oscillators are estimated using Polymax algorithm. A precise estimate of
Young’s modulus of each fettuccine strand is calculated using Eq. 11.

Table 6: Estimated dynamic characteristics of the individual oscillators

OSC parameter estimation OSC tuning step

OSC no. Length Exp. η Exp. ζ Estimated E Target η
Tip-mass

Calculated Tuned Error

SO
A

-1

OSC-1a 8 in 8.46 Hz 1.36% 2.57 GPa 4.76 Hz 0.914 g 0.930 g 1.7%
OSC-1b 8 in 8.56 Hz 1.03% 2.63 GPa 4.92 Hz 0.819 g 0.840 g 2.5%
OSC-1c 8 in 8.05 Hz 0.87% 2.39 GPa 4.58 Hz 0.966 g 0.970 g 0.4%

SO
A

-2

OSC-2a 5 in 20.67 Hz 2.04% 2.34 GPa 12.76 Hz 0.416 g 0.440 g 5.7%
OSC-2b 5 in 20.73 Hz 1.84% 2.35 GPa 12.55 Hz 0.460 g 0.480 g 4.3%
OSC-2c 5 in 20.22 Hz 2.05% 2.24 GPa 13.20 Hz 0.347 g 0.350 g 0.8%

µ = 1.53% µ = 2.42 GPa

µ is the mean estimate, η - natural frequency, ζ - modal damping ratio and E - Young’s modulus

Once the precise flexural stiffness is estimated, the natural step is to determine the tip-mass to tune
the oscillator. Previously, the tip-mass is estimated based on the peaks in the FRFs. The magnitudes of
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Figure 8: Experimental Iterative FRFs of SOAs

Table 7: Peak magnitude and attenuation achieved during each step of iterative SOA design while following the proposed
design methodology

Natural Freq. OSC-No.
Frequency Peak’s Magnitude Attenuation

Peak’s Target’s Mass 1 Mass 2 Mass 1 Mass 2

1st

No OSC 4.76 Hz 4.76 Hz 49.17 dB 45.48 dB - -
OSC - 1a 4.92 Hz 4.92 Hz 30.47 dB 26.81 dB 18.6 dB 18.67 dB

OSC - 1a, 1b 4.56 Hz 4.58 Hz 31.59 dB 27.79 dB 17.58 dB 17.69 dB

OSC - 1a, 1b, 1c 4.65 Hz - 23.91 dB 20.15 dB 25.26 dB 25.33 dB

2nd

No OSC 12.86 Hz 12.76 Hz 28.46 dB 31.13 dB - -
OSC - 2a 12.5 Hz 12.55 Hz 14.61 dB 16.49 dB 13.85 dB 14.64 dB

OSC - 2a, 2b 13.20 Hz 13.20 Hz 11.59 dB 15.17 dB 16.87 dB 15.96 dB

OSC - 2a, 2b, 2c 12.2 Hz - 11.19 dB 12.23 dB 17.27 dB 18.9 dB

the two new peaks may not be equal, as natural frequencies of the oscillators in an SOA are very close to
each other. Alternatively, the tip-mass is estimated such that the target peak splits into two peaks of equal
magnitudes. The analytical model of the 2-DOF system with oscillators is used to iterate through a set of

14



4 6 8 10 12 14
Frequency (Hz)

-60

-40

-20

0

20

40

60

M
ag

ni
tu

de
 (

dB
)

FRF of Mass 1

Host
With SOA

4 6 8 10 12 14
Frequency (Hz)

-60

-40

-20

0

20

40

60

M
ag

ni
tu

de
 (

dB
)

FRF of Mass 2

Host
With SOA

Figure 9: Complete experimental FRF of the host with SOAs made of fettuccine and modeling clay

permissible tip-masses. Consequently, the tip-mass resulting in two peaks of equal magnitudes is added
to the oscillator. The above procedure is repeated until the desired reduction in magnitude, or flat FRF is
achieved.

This design methodology is implemented on the current test-setup, and the corresponding experi-
mental results are presented in Figure 8. As discussed earlier, the fettuccine oscillators are first attached
(without tip-mass) to the host to estimate its modal damping and Young’s modulus. Table 6 summarizes
these estimates along with the tip-mass calculated from simulations. This table also compares the cal-
culated tip-mass value with the final attached clay mass that resulted in peaks of equal magnitude in the
FRF. This discrepancy in the theoretical and the actual tip-mass values arises because a point mass does
not accurately model the clay at the tip of the cantilevered strand.

Table 7 summarizes the peak magnitudes of the modified structure along with the attenuation achieved
at each step of the iteration. Additionally, Figure 6 shows the progression of the FRFs as the host is mod-
ified. This figure shows that tuning SOAs of three oscillators can experimentally create a flat spectrum
similar to the simulation results shown in Figure 5. Also, having knowledge of the precise dynamic
properties of the oscillators is important to get reasonably uniform peaks in the frequency bandwidth of
interest.

In the previous section, 28.55 dB and 20.24 dB reduction in magnitude of the mass 1’s (first and
second) natural frequencies were achieved with SOAs of nine and six mistuned oscillators, respectively.
However, by precisely tuning the oscillators, 25.26 dB and 17.27 dB reduction is achieved for the same
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with two SOAs of three oscillators only. The difference in the quality of the final response is evident from
Figure 6a and Figure 9. Table 8 summarizes the minimum magnitude reduction achieved around the first
and second natural frequencies for the 2-DOF system. Also, when a single oscillator case is compared
against SOAs, SOAs show a better broadband performance than a single oscillator. The table also in-
dicates that the effectiveness of the SOA designed using random placement methods is only marginally
better than that of the SOA designed using the proposed approach. This difference can be attributed to
the much higher number of oscillators in the SOA designed using random placement method. One can
argue the validity of the comparisons between the SOAs and the single oscillator since their mass ratios
differ vastly. This shows that mass-ratio is one of the important parameters, and in the next section SOAs
are compared against a single oscillator with matching mass-ratio.

Table 8: Comparison of performance of single oscillator and SOAs designed using random placement and proposed design
methods

Natural Freq. Absorber Magnitude Reduction across Band Mass RatioMass 1 Mass 2

1st
Single oscillator (OSC-1a) 18.6 dB 18.67 dB 0.4%
SOA - random placement 28.55 dB 28.5 dB 3.9%
SOA - proposed method 25.26 dB 25.33 dB 1.2%

2nd
Single oscillator (OSC-2a) 13.85 dB 14.64 dB 0.2%
SOA - random placement 20.239 dB 21.325 dB 1.5%
SOA - proposed method 17.27 dB 18.9 dB 0.7%

Table 9: Magnitude reduction at peak’s frequency at different damping ratios of the oscillators in the SOA

Natural Freq. Damping Ratio
Peak Magnitude Peak Frequency Reduction at Peak’s Frequency

Mass 1 Mass 2 Mass 1 Mass 2 Mass 1 Mass 2

1st

Host 49.17 dB 45.48 dB 4.76 Hz 4.76 Hz - -
0.1% 42.78 dB 38.86 dB 4.471 Hz 4.471 Hz 6.39 dB 6.62 dB

0.5% 32.96 dB 29.1 dB 4.469 Hz 4.469 Hz 16.21 dB 16.38 dB

1% 28.39 dB 24.63 dB 4.466 Hz 4.466 Hz 20.78 dB 20.85 dB

1.96% 24.86 dB 21.25 dB 4.466 Hz 4.466 Hz 24.31 dB 24.23 dB

3% 23.99 dB 20.35 dB 4.677 Hz 4.668 Hz 25.18 dB 25.13 dB

2nd

Host 28.46 dB 31.13 dB 12.86 Hz 12.86 Hz - -
0.1% 24.34 dB 27.48 dB 12.3 Hz 13.41 Hz 4.12 dB 3.65 dB

0.5% 16.53 dB 19.98 dB 12.29 Hz 13.42 Hz 11.93 dB 11.15 dB

1% 12.87 dB 16.04 dB 12.28 Hz 13.43 Hz 15.59 dB 15.09 dB

1.96% 10.3 dB 12.94 dB 12.3 Hz 13.42 Hz 18.16 dB 18.19 dB

3% 9.874 dB 12.3 dB 12.59 Hz 12.69 Hz 18.586 dB 18.83 dB

6. Parametric Study

6.1. Effect of damping
One of the crucial factors that define the flatness of the frequency band is damping of the subordinate

oscillators. As evident from Figure 10, the peaks, and valleys in the frequency band disappear as the
damping ratio reaches 1.96%, and thus a flatter frequency response is achieved. Note that the value
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1.96% is the average damping ratio obtained from the preliminary fettuccine experiments. Table 9 lists
the amount of magnitude reduction achieved at different damping ratios. As evident from the figure and
the table, increasing the damping ratio reduces the magnitude peaks across the band. However, beyond a
critical damping value, which is 1.96% in this case, the magnitude reduction is no longer significant. This
analysis proves that the damping ratio and hence the material chosen for the oscillators can influence the
SOA’s performance significantly. In cases where one has to select oscillators with low damping ratios for
different design situations, SOAs with a higher number of oscillators can produce the desired frequency
response [9].

(a) First Resonant Frequency (b) Second Resonant Frequency

Figure 10: Effect of damping on the FRFs of the host with SOAs

6.2. Robustness Study
Previous sections highlighted that SOAs are useful for broadband vibration attenuation, and it is

known that single oscillator absorbers/DVAs are meant for cases where the frequency of excitation is rel-
atively constant. In this section, the performance of SOAs and DVAs are investigated when the dynamic
properties of the host are perturbed. The focus of this study is to investigate the performance of DVAs
and SOAs when the natural frequency shifts from ω to ω̃. Figures 11 and 12 compare the robustness of
the SOA with that of the DVA. These figures present two ways of comparing the performance of SOAs
and DVAs when the host’s natural frequency is varied by ±10%, i.e., 0.9 ≤ ω̃/ω ≤ 1.1. The x-axis of
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these figures is the perturbed non-dimensional natural frequency (i.e. ω̃/ω), and the value of 1 on the
x-axis corresponds to the unperturbed case discussed in the previous sections.

In Figure 11, the dB reduction is calculated between the peak magnitude of the unmodified host
and the highest peak’s magnitude of the modified/perturbed host. For the first and the second resonant
frequency, ω is equal to 4.76 Hz and 12.86 Hz, respectively, and the dB reduction in the figure gives a
measure of the minimum attenuation achieved around the corresponding host’s resonant peaks. One can
observe that the dB reduction in the case of SOA is higher than DVA at ω̃/ω = 1 ( the unperturbed case
), which conforms with the previous discussions and intuition. As the host’s properties are perturbed,
the performance of both the systems deteriorate. However, even at high levels of perturbation, the SOA’s
performance is always better than that of the DVA for 0.9 ≤ ω̃/ω ≤ 1.1. The shaded region shown in
the figure gives a figurative intuition of the level of perturbation required for the system with SOA to
deteriorate to the best performance achieved by the DVA.

As DVAs have the best performance at their tuned frequency - ω, Figure 12 presents the dB reduction
at ω. Given that the host’s natural frequency is perturbed to ω̃, the DVA is mistuned and its performance
deteriorates drastically as seen in this figure. However, SOA’s magnitude reduction remains fairly con-
stant over a higher perturbation. Beyond a critical perturbation, both the systems deteriorate drastically.
It is easy to infer from both the figures that SOAs are better for structures with higher uncertainty. On
the other hand, DVAs are a better choice only when the uncertainty in structural parameters of the host is
almost insignificant or when the system is excited at a single natural frequency, which are highly unlikely
in practical applications.

7. Conclusion

The present work aims to design a hands-on experiment that extends the teaching of broadband vibra-
tion attenuation to a class focused on structural dynamics. An array of dynamic vibration absorbers, also
called Subordinate Oscillator Arrays, are developed using fettuccine pasta and modeling clay to extend
the concept and even provide simplified exposure to modern day meta-structures. The SOAs are designed
to attenuate the dynamics of a 2-DOF structure. The dynamics of the modified structure is studied via
simulations and experimental investigation.
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