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Abstract— This paper derives rates of convergence of certain
approximations of the Koopman operators that are associated
with discrete, deterministic, continuous semiflows on a complete
metric space (X, dX). Approximations are constructed in terms
of reproducing kernel bases that are centered at samples taken
along the system trajectory. It is proven that when the samples
are dense in a certain type of smooth manifold M ⊆ X , the
derived rates of convergence depend on the fill distance of
samples along the trajectory in that manifold. Error bounds
for projection-based and data-dependent approximations of
the Koopman operator are derived in the paper. A discussion
of how these bounds are realized in intrinsic and extrinsic
approximation methods is given. Finally, a numerical example
that illustrates qualitatively the convergence guarantees derived
in the paper is given.

I. INTRODUCTION

Over the past decade an extensive literature has been
archived on Koopman theory, and more generally on data-
dependent approaches, for modeling various types of non-
linear systems. An idea of the breadth of applications of the
theory can be gained by considering the work in [1], [2] for
studies of molecular dynamics, or [3], [4] for applications
to the study of fluid flows, or [5], [6] in the atmospheric
sciences. A good account of the basics underlying Koopman
theory can be found in texts like [7] or [8]. Recent notable
references that feature some treatment of error estimates or
convergence of Koopman operator approximations include
[9], [10], [11], [12], [13]. The authors of [10] give an account
of rates of approximation of certain Koopman operators
in linear approximation spaces. This paper extends those
results by relating the rates of approximation in terms of
fill distances in manifolds.

The motivation for employing Koopman methods is now
well-known: the theory provides an approach to the study
of uncertain systems that makes extensive use of opera-
tor theory to enhance the understanding of the unknown
dynamics. The theory is generally applicable to, indeed
in a sense expressly designed for, the study of nonlinear
systems. Koopman theory provides an elegant framework in
which to carry out analysis of uncertain nonlinear dynamics
as well as to develop data-driven algorithms for modeling
and identification of such systems. To be sure, there are
both theoretical and pragmatic reasons for the popularity of
Koopman methods.
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As explained well in a number of other references such
as [14], and in greater detail than is possible in this short
conference paper, there is a fundamental trade-off in applying
Koopman theory to a given nonlinear system. If we have
a nonlinear system whose dynamics is poorly understood,
Koopman theory in principle entails replacing the study
of the system of interest, which is nonlinear and finite
dimensional, with one that is linear and infinite dimensional.
Since practical considerations dictate that finite dimensional
representations are needed, questions regarding the conver-
gence of approximations must be addressed in any full
understanding of Koopman theory. Unfortunately, many of
the finer points regarding the convergence of approximations
of the Koopman operator are necessarily nuanced. The large
number of explicitly cited papers above that have appeared
over the past five years or so have carefully studied various
questions related to convergence of Koopman approxima-
tions.

As motivation for this paper, it is useful to compare the
state of the art in Koopman theory to that in the field of
evolutionary partial differential equations (PDEs) or nonlin-
ear regression. Several decades of research in these fields
has resulted in a rich theory that relates rates of convergence
of approximations to the choice of bases. Here, when we
refer to rates of convergence we mean error bounds that are
explicit in the dimension n of the space of approximants or
the number of samples m, or both. As noted above, sufficient
conditions that ensure convergence asymptotically as n→∞
or m → ∞ are numerous in Koopman theory, whereas
rates of convergence are far less common. There are many
reasons for this. Approximations of the Koopman operator
are typically generated using samples along the trajectory of
an uncertain dynamical system, and consequently the domain
over which approximations are to be constructed can be
unknown a priori.

A. Summary of New Results

In this paper, a number of new results are derived that
make precise the rates of convergence of approximations of
some types of Koopman operators that are associated with
deterministic flows on manifolds.

1) The Problem Setup and Formulation: We begin the
analysis in this paper by assuming that we have discrete
deterministic semiflow on a state space that is a complete
metric space (X, dX). Continuity of the semiflow is defined
in terms of the metric dX on the state space X . The
continuous semiflow is induced by the autonomous recursion
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φn+1 = f(φn) (1)

for some unknown function f : X → X . Approximation
results derived in this paper are stated for the Koopman
operator Ufg := g ◦ f . We let Ωn := {ξi ∈ X | 1 ≤ i ≤ n}
denote a finite set of observations of the state of the system,
and the complete set of samples associated with some fixed
initial condition is denoted Ξ := Ξ(φ0) :=

⋃
n∈N Ωn ⊂

Γ+(φ0). Here Γ+(φ0) :=
⋃
i∈Z+ φi is the forward orbit

through φ0 ∈ X . The samples Ξ are assumed to be dense
in a limiting set Ω, which may coincide with the entire state
space Ω = X , or it can be a proper subset Ω ⊂ X . One
of the essential features of this paper is that the rates of
convergence of approximations of the Koopman operator,
which apply when it so happens that the limiting set Ω is a
smooth manifold M , are given in terms of the fill distance
hΩn,Ω of the finite collection of samples Ωn in the limiting
set Ω, hΩn,Ω := supx∈Ω minξi∈Ωn

dX(x, ξi). Note that since
we want hΩn,Ω → 0 as n→∞, it must be the case that the
limiting set Ω is bounded in the analysis in this paper.

Realizations of approximations to the Koopman opera-
tor are built in this paper using finite dimensional spaces
of approximants HΩn

:= span{KX,ξi | ξi ∈ Ωn} with
KX,ξi(·) := KX(ξi, ·) the basis function centered at the
sample ξi ∈ X , where KX : X × X → R is the kernel
function that induces the native space of the reproducing
kernel Hilbert space HX .

2) Projection-Based Approximations: The first new result
of the paper is stated in Theorem 2, and it applies when
Ω = M is in fact a smooth, compact, connected, Riemannian
manifold. In this case we select the native space HM so that
it is continuously embedded in a Sobolev space W t,2(M) of
high enough order. This theorem gives sufficient conditions
to ensure that the projection-based Koopman operator Unf :=
(PΩn

(·)) ◦ f satisfies a bound that has the form

‖Ufg − Unf g‖f∗(W s,2(M)) . ht−sΩn,M
‖g‖W t,2(M) (2)

for all g in the Sobolev space W t,2(M), provided that the
limiting set Ω is in fact a smooth, connected, compact,
Riemannian manifold Ω := M . In this equation the error
is measured in the pullback space f∗(W s,2(M)), defined in
Section II. The ranges for the smoothness indices t, s are
dictated by the Sobolev embedding theorem and the “many
zeros” theorem (Theorem 1) on manifolds. The bound in
Equation 2 as of yet has no analog in the series of recent
articles cited above for approximations of the Koopman
operator.

3) Data-Dependent Approximations: The initial approx-
imation Unf (·) := (PΩn(·)) ◦ f in Equation 2 uses the
orthogonal projection operator PΩn : HM → HΩn , but
this expression cannot be evaluated unless the function f is
known. As shown in Section III, the operators Unf can be con-
structed from the input-output samples {(φi, yi)}1≤i≤n =
{(φi, f(φi)}1≤i≤n along the discrete trajectory of the system
in Equation 1. It is also worth noting that the realization
of the coordinate representation of Unf is closely related to
the approximation of the Koopman operator that is defined

in terms of the Extended Dynamic Mode Decomposition
(EDMD) algorithm [15], in the special case that the number
of samples is equal to the dimension of the space of
approximants. The definition above of Unf makes sense only
so long as (PΩn

g) ◦ f ⊆ HM . Thus, a standing assumption
in this case is that the pullback space f∗(HM ) ⊆ HM . Since
(PΩng) ◦ f ∈ f∗(HM ), this structural assumption is enough
to ensure that the data-driven operator Unf is well-defined.
Theorem 4 is representative of the type of bound that can be
derived in this case. We have a pointwise error bound

|(Ufg)(x)− (Unf g)(x)| ≤ CMht−sΩn,M
‖g‖W t,2(M)

for each x ∈ M in terms of the fill distance of the samples
Ωn in the manifold M . Again, this result is novel among the
articles in the recent literature on approximation of Koopman
operators.

4) Intrinsic and Extrinsic Approximations: The represen-
tations of the approximations of the Koopman operator in
this paper are explicit in terms of the kernel basis KX,ξi that
is defined over the state space X , where KX : X×X → R is
the kernel that defines the reproducing kernel Hilbert (RKH)
space HX . In cases when the samples Ξ are dense in X ,
the kernel basis KX,ξi is defined from a kernel defined on
all of X . A critical feature of the error bounds in the paper
is that they are derived by assuming that the kernel induces
a native space HX that is embedded in or equivalent to a
Sobolev space. In particular applications coming up with the
needed closed form expressions for a kernel can sometimes
be difficult. For this reason, we describe both intrinsic and
extrinsic realizations of the approximation framework in this
paper, which we describe next.

In all of the theorems developed in this paper, the limiting
set Ω is assumed to be a smooth Riemannian manifold
M := Ω. In some cases the limiting set fills the entire state
space X = M = Ω, and in others it is a proper subset M =
Ω ⊂ X . When the limiting set Ω = M is in fact the entire
state space X , it is possible to use an intrinsic approximation
method since the manifold is known in this case. When
we say that an approximation method is intrinsic, we mean
that the kernel used in approximations is defined in terms
of the intrinsic definition of the manifold M . For example,
the kernel may be defined in terms of the eigenfunctions
of a differential operator on the manifold. A fine analysis of
rates of convergence for intrinsic approximations of functions
are described in the set of papers [16], [17], [18]. However,
coming up with the required closed form expressions is a
nontrivial task for a general Riemannian manifold M and
requires detailed knowledge of the form of the manifold M .

It is perhaps most usually the case in practical problems
that the samples Ξ do not fill the entire state space X . Rather,
the limiting set Ω in which the samples Ξ are dense is
typically not known. In this case, even if the limiting set
Ω is a nice smooth manifold, it is impossible to use a kernel
basis KM,ξi that is defined intrinsically with respect to the
manifold M := Ω. In this latter case we employ an extrinsic
approximation. A general study of extrinsic methods for
approximation of functions can be found in [19]. We choose
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a kernel KX that is well-defined and known on the large
state space X , and we define a kernel on the manifold M
by restriction. Even though the manifold M is not known,
if we are given samples that reside on M , all the coordinate
realizations of the approximations of the Koopman operator
can still be computed. Moreover, the rates of approximation
above can still be shown to hold when restricted to a regularly
embedded submanifold M ⊂ X . Since the submanifold is a
set of zero measure as a subset of X , there is some loss of
regularity that reduces the guaranteed rate of convergence.
We outline this analysis in Section IV.

II. CONSTRUCTIONS IN RKH SPACES
As mentioned in Section I, HX is an RKH space of

real-valued functions over X . In this section, we review
relevant definitions and properties of the RKH space HX ,
the restricted RKH space of functions over the manifold
M ⊂ X HM , and the pullback space f∗(HM ) where
f : M → M . This section also includes a brief discussion
of the interpolation and the projection operators defined on
RKH spaces.

A. RKH Space HX and HM of Functions
A symmetric, continuous, real valued function KX : X ×

X → R, is a reproducing kernel if it is a positive type
function, i.e. for any finite collection of points {ξi}1≤i≤n ⊆
X , the Grammian KX,n := [KX(ξi, ξj)] is a positive semi-
definite matrix. All such positive type functions induce an
reproducing kernel Hilbert (RKH) space HX that is defined
as HX := span{KX,x | x ∈ X}, where KX,x(·) is the
kernel centered at x ∈ X and is equal to KX(x, ·). The
inner product (·, ·)HX

of the Hilbert space HX is defined
as (KX,x,KX,y)HX

:= KX(x, y) for any two functions
KX,x,KX,y ∈ HX and for all x, y ∈ X . It satisfies the
reproducing property (f,KX,x)HX

= f(x) for all f ∈ HX

and x ∈ X . Not all Hilbert spaces are RKH spaces. A
necessary and sufficient condition for a Hilbert space to be an
RKH space is the boundedness of the evaluation functional
Ex : f → f(x) for any x ∈ X . In our analysis, we
assume that the evaluation functional is in fact uniformly
bounded, i.e. there exists a constant k̄ such that ‖Ex‖ ≤ k̄
for all x ∈ X . This assumption guarantees that the RKH
space is embedded into the space of continuous function
C(X), that is, HX ↪→ C(X). If the manifold M = X ,
the RKH space HM = HX . However, when M ⊂ X and
the intrinsic structure of M is not exactly known, we define
the space HM by restricting the kernel KX to M × M .
The restriction of KX , KM : M ×M → R, is defined as
KM (x, y) := KX |M×M (x, y) for all x, y ∈M . Naturally, we
can define the space HM using the kernel KM similar to the
way we defined HX . The space HM is itself an RKH space
and its inner product is defined in terms of the kernel KM .
Alternatively, if RM represents the restriction operator to M ,
we can define HM as HM = RM (HX) := {RMf |f ∈ HX}.

B. The Pullback RKH Spaces γ∗(HM ) for γ : S →M

The pullback space γ∗(HM ) generated by the space of
functions HM and any mapping γ : S → R is defined to

be γ∗(HM ) := {g : S → R | g = h ◦ γ, h ∈ HM} for
any set S. By definition, the Koopman operator Uf maps an
element of HM to its pullback space f∗(HM ). When HM

is a general normed vector space with the norm ‖ · ‖HM
,

the norm of the pullback space is defined as ‖g‖γ∗(HM ) :=
min{‖h‖HM

| g = h◦γ, h ∈ HM}. When HM is an RKH
space, which is what we assume in this paper, the pullback
space γ∗(HM ) is itself an RKH space with the kernel KM,γ

defined as KM,γ(τ, s) := KM (γ(τ), γ(s)) for all τ, s ∈ S.
In other words, the kernel KM,γ generates the pullback
space γ∗(HM ), i.e. γ∗(HM ) := span{KM,γ,s | s ∈ S} with
KM,γ,s := KM (γ(s), γ(·)) for each s ∈ S.

C. Interpolation and Projection
The space HM discussed in the previous subsection is

infinite-dimensional and the Koopman operator Uf maps
this space to corresponding infinite-dimensional dimensional
pullback space f∗(HM ). We define the approximation of the
Koopman operator in terms of a certain finite-dimensional
subspace of HM . Let Ωn := {ξ1, . . . , ξn} ⊆ M be a set
of n points, and let HΩn

:= span{KM,ξi | ξi ∈ Ωn} be
the corresponding RKH space. We define the orthogonal
projection operator PΩn

: HM → HΩn
as the unique

mapping that satisfies the identity ((I − PΩn
)h, g)HM

= 0
for all g ∈ HΩn and h ∈ HM . The projection operator
decomposes the space HM into HM = HΩn

⊕ VΩn
, where

VΩn
:= {f ∈ HM | f |Ωn

= 0}. We define the interpolation
operator IΩn

: HM → HΩn
to be the unique operator that

satisfies the interpolation conditions (IΩn
f)(ξi) = f(ξi) for

all ξi ∈ Ωn and f ∈ HM . For RKH spaces, the interpolation
operator is identical to the projection operator, in other
words, IΩn

f = PΩn
f for all f ∈ HM .

D. Sobolev Spaces over Riemannian Manifolds M
Suppose we have a (smooth) Riemannian manifold M

with metric gp and inner product (·, ·)gp on the tangent
space TpM at point p ∈ M . When r is an integer, the
Sobolev space W r,2(Ω) for a subset Ω ⊆M contains all the
functions in L2(Ω) such that the norm induced by the inner
product (f, g)Wk,2(Ω) :=

∑
0≤j≤r

∫
Ω

(∇jf,∇jg)g,pdµ(p) is
bounded. In the above definition of the inner product, the
term µ is the volume measure on the manifold M . Given
a set of coordinates (x1, . . . , xd), the volume measure is
dµ(x) :=

√
det(g)dx1 . . . dxd. For r > 0, the Sobolev space

W r,2(Ω) is defined as an interpolation space between the
integer order Sobolev space and L2(Ω). A theorem we use
to prove the results of this paper is a simplified version of
the “many zeros” theorem [16], [17], [20] given below.

Theorem 1: Suppose that M is a smooth d-dimensional
manifold. Let t ∈ R with t > d/2, s ∈ N0 with 0 ≤ s ≤
dte− 1. Then there are constants hM , CM > 0 such that for
all Ωn ⊂ Ω such that the fill distance hΩn,M ≤ hM and for
all u ∈W t,2(M) that satisfies u|Ωn

= 0, we have

‖u‖W s,2(M) ≤ CMht−sΩn,M
‖u‖W t,2(M).

E. Relationships between RKH Spaces and Sobolev Spaces
In this paper, we derive the convergence results and

approximation rates when the RKH space HM is embedded
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in a Sobolev space W r,2(M) for real r > 0. When the
manifold M is a d-dimensional, connected, smooth, Rie-
mannian manifold having a positive radius of injectivity and
bounded geometry, by the Sobolev embedding theorem, we
have W r,2(M)

i
↪→ C(M) for r > d/2. When this is true,

we have |Exf | = |f(x)| ≤ ‖f‖C(M) ≤ C‖f‖W r,2(M). This
shows that the evaluation functional is bounded, which in
turn implies that W r,2(M) is a RKH space when r > d/2.
A discussion of these results can be found in [16], [17], [18].

III. APPROXIMATIONS OF THE KOOPMAN
OPERATOR Uf

This section presents the principal results of this paper.
We present error rates for two different types of approxima-
tions of the Koopman operator Uf , (i) the projection-based
approximation Unf := UfPΩn

, and (ii) the data-dependent
approximation Unf := PΩn

((PΩn
g) ◦ f).

We define the first approximation of the Koopman operator
Unf as Unf g = (PΩn

g) ◦ f, where f : M → M . When the
samples are dense in the manifold M , we can express this
finite-dimensional approximation using the relation

(Unf g)(x) =
∑

1≤i,j≤n

K−1
M,j,i(Ωn)g(ξi)KM,ξj (f(x))

for all x ∈ M and g ∈ HM . In the above identity,
the term K−1

M (Ωn) represents the inverse of the Grammian
matrix KM (Ωn) := [KM (ξm, ξn)] associated with the finite
sample set Ωn. From the above expression, we note that this
approximation of the Koopman operator can be computed
only when the function f is explicitly known.

For the data-driven approximation, we use the second
approximation of the Koopman operator Unf . In this paper,
when constructing the operator Unf , we assume that (i)
the samples Ξ are dense in the manifold M , and (ii) the
pullback space f∗(HM ) is a subset of the RKH space HM .
Note that the projection operator PΩn

: HM → HM . The
definition of the approximated Koopman operator Unf makes
sense only when the second assumption mentioned above
is valid. A coordinate representation of the data-dependent
approximation is given by

Unf g :=
∑

1≤i,j≤n

K−1
M,j,i(Ωn)h(ξi)KM,ξj ,

where h(ξi) :=
∑

1≤p,q≤nK
−1
M,q,p(Ωn)g(ξp)KM,ξq (f(ξi)).

Theorem 2: Suppose that M is a d-dimensional, con-
nected, compact, Riemannian manifold without boundary, let
KM : M ×M → R be a positive definite kernel that induces
a native space HM , and suppose that HM is equivalent to
the Sobolev space W t,2(M) for some t ∈ R that satisfies
d/2 < s ≤ dte − 1 for a given s ∈ N. Then there are
constants CM , hM > 0 such that for all Ωn ⊂ Ω that satisfy
hΩn,Ω ≤ hM , we have

‖Ufg − Unf g‖f∗(W s,2(M)) ≤ CMht−sΩn,M
‖g‖W t,2(M)

for g ∈W t,2(M).
Proof: Since s > d/2, the Sobolev embedding theorem

implies that W s,2(M) is a RKH space, and therefore the

pullback space f∗(W s,2(M)) is a well-defined RKH space.
By the definition of the pullback space we have

‖Ufg − Unf g‖f∗(W s,2(M)) ≤ ‖Uf‖‖(I − PΩn)g‖W s,2(M).

By definition of the norm of the pullback space, we
have ‖Ufg‖f∗(W s,2(M)) ≤ ‖g‖W s,2(M), which implies that
‖Uf‖ ≤ 1. Additionally, we know that ((I−PΩn

)g)|Ωn
= 0

on Ωn since the projection is identical to the interpolant over
Ωn. By the many zeros Theorem 1, we conclude that

‖Ufg − Unf g‖f∗(W s,2(M)) ≤ CMht−sΩn,M
‖g‖W t,2(M).

The bound above is stated in terms of the norm on the
pullback space f∗(HM ), which may seem rather abstract.
The following theorem illustrates that such a bound naturally
leads to a more intuitive pointwise bound.

Theorem 3: Suppose that the hypotheses of Theorem 2
hold. There are constants CM , hM > 0 such that for all
Ωn ⊂ Ω that satisfy hΩn,Ω ≤ hM , we have the pointwise
bound

|(Ufg)(x)− (Unf g)(x)| ≤ CMht−sΩn,M
‖g‖W t,2(M)

for all g ∈W t,2(M) and x ∈M .
Proof: First, we note that

|(Ufg)(x)− (Unf g)(x)| = |g(f(x))− (PΩng)(f(x))|
≤ sup
η∈M
|g(η)− (PΩn

g)(η)| = ‖(I − PΩn
)g‖C(M).

Since s > d/2, by the Sobolev embedding theorem, there
exists a constant K such that ‖(I −PΩn

)g‖C(M) ≤ K‖(I −
PΩn)g‖W s,2(M). From Theorem 1, we can conclude that

|(Ufg)(x)− (Unf g)(x)| ≤ CMht−sΩn,M
‖g‖W t,2(M).

The final, principal result of this paper uses the above to
derive pointwise bounds for data-driven approximations of
the Koopman operator.

Theorem 4: Suppose that the hypotheses of Theorem 2
holds. Furthermore, suppose that the mapping f : M → M
is such that the pullback space f∗(HM ) ↪→ HM . Then there
are constants CM , hM > 0 such that for all Ωn ⊂ Ω that
satisfy hΩn,Ω ≤ hM , we have the pointwise bound

|(Ufg)(x)− (Unf g)(x)| ≤ CMht−sΩn,M
‖g‖W t,2(M)

for g ∈W t,2(M) and x ∈M .
Proof: Since f∗(HM ) ⊆ HM , we know that PΩn

g ∈
HM and (PΩn

g) ◦ f ∈ f∗(HM ) ⊂ HM . By definition, we
have

|(Ufg)(x)− (Unf g)(x)| ≤ |(g ◦ f)(x)− (PΩn
g) ◦ f)(x)|

+ |((I − PΩn)((PΩng) ◦ f))(x)|.

Under the hypotheses of this theorem, we have HM ≈
W t,2(M) ↪→ W s,2(M) ↪→ C(M). This implies that there
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are positive constants K1 and K2 such that

|(Ufg)(x)− (Unf g)(x)| ≤ sup
η∈M
|(((g − PΩng) ◦ f)(η)|

+ sup
η∈M
|((I − PΩn

)((PΩn
g) ◦ f))(η)|

≤ ‖(I − PΩn
)g‖C(M) + ‖(I − PΩn

)((PΩn
g) ◦ f)‖C(M)

≤ K1‖(I − PΩn
)g‖W s,2(M)

+K2‖(I − PΩn
)((PΩn

g) ◦ f)‖W s,2(M)

Now we apply the many zeros Theorem 2 to each of the right
hand side terms above. We know that (I − PΩn)g) |Ωn =
0, (I − PΩn)((PΩng) ◦ f)) |Ωn = 0 since the projection
operator PΩn

is identical to the interpolation operator on
Ωn ⊂ M . By the many zeros theorem on the manifold M ,
we get

|(Ufg)(x)− (Unf g)(x)|
≤ C1h

t−s
Ωn,M

‖g‖W t,2(M) + C2h
t−s
Ωn,M

‖(PΩn
g) ◦ f‖W t,2(M)

≤ max{C1, C2}ht−sΩn,M
(1 + c)‖g‖W t,2(M),

where c is the constant of the embedding f∗(HM ) ↪→ HM .

IV. NUMERICAL EXAMPLE AND CONCLUSIONS

In this section, we study the application of the derived
bounds on rates of convergence to the classical model of a
bouncing ball on a vibrating surface. The difference equation
that defines the state trajectory is given by

φj+1 = φj + νj , νj+1 = ανj − γ cos(φj + νj),

where φ and ν are the nondimensional impact time and the
velocity after impact, respectively. The constants α and γ in
the above equation represent the dissipation coefficient and
force amplitude, respectively. We refer the reader to [21] for
a more detailed discussion of this dynamical system. The red
markers in Figure 1 show the state trajectory generated by
this system when α = 1 and γ = 0.45, [φ0, ν0]T = [0.1, 0]T

after 1024 iterations. The function f : R2 → R2 in this case
is given by f([φj , νj ]) → [φj+1, νj+1]T . For purposes of
illustration, we choose the observable function g : R2 → R
defined as g([φ, ν]T ) = φ+ ν.

A. Challenges to Intrinsic Approximations

This example has been selected in part to emphasize some
of the inherent difficulties when seeking to generate bounds
on rates of approximation of Koopman operators by intrinsic
methods. In view of Figure 1, it seems reasonable to believe
that the samples Ξ are dense in a smooth, one-dimensional,
regularly embedded submanifold M of X := R2. Even
though this example is exceptionally straightforward, where
the mapping f : X → X and the observable g : X → R
are known in closed form, it remains difficult to employ the
bounds in Theorems 2 through 4 in an intrinsic approxi-
mation over M . To employ the results of these theorems,
we would first need to define some Riemannian metric on
M . Theoretically this is always possible if M is a smooth
manifold. Subsequently we must define an appropriate kernel

KM : M ×M → R whose native space is equivalent to a
Sobolev space. In principle, this too can be accomplished.
For example, we can solve for the fundamental solution of
a sufficiently high order of the Laplace-Beltrami operator
over M , which could then be taken as the kernel of HM . By
definition we would obtain HM ≈W t,2(M) for some t > 0,
see [16] and the references therein for a general discussion.
With such a definition of the kernel KM : M ×M → R,
the results of the theorems in this paper would then apply.
However, even in this remarkably simple example, it is
no simple feat to solve for the fundamental solution over
M . Pragmatically speaking, we do not have a closed form
expression for an atlas for M , and consequently we cannot
solve the coordinate representations of the equation defining
the fundamental solution. It would seem that constructing a
kernel that is intrinsic to M would be prohibitively difficult
in this case. We should note of course, that not all examples
pose such problems for intrinsic approximations. If the
samples Ξ of the semiflow are dense in some well-known
manifold for which the solution of the Laplace-Beltrami
operator equation is known, then the approximations and
theorems in this paper are directly applicable.

B. Explicit Approximations
Fortunately, the theorems in this paper are easily applied

for certain types of extrinsic approximations. We briefly
outline the process. The Sobolev-Matern kernels KX,ν :
X×X → R on X = R2 are known in closed form, and they
induce a native space HX that is contained in the Sobolev
space W τ,2(Rp) for τ < 2ν − p/2. Note, the term ν is a
positive parameter that defines a family of Sobolev-Matern
kernels. By the trace theorem, the restriction KM,ν := KX |M
of the kernel KX,ν induces a native space HM over the
manifold M that is contained in the Sobolev space W t,2(M),
where t < τ − (p − d)/2. In our example, a 1-dimensional
manifold is contained in R2, and hence p = 2 and d = 1.
Note that there is some loss of smoothness in restricting
functions in HX ≈ W τ,2(X) to the regularly embedded
submanifold M in that HM ≈W t,2(M).

In this simulation, we use the Sobolev-Matern kernel
KX,ν=5/2, which has the form KX,ν=5/2(x, y) = K(‖x−y‖),
where K(r) :=

(
1 +

√
5r
l + 5r2

3l2

)
exp

(
−
√

5r
l

)
. The term l

is a positive parameter, and we obtained the numerical results
of this paper with l = 1e − 1. Note that the above kernel
is defined over X = R2 and its RKH space is contained in
W τ,2(R2), where τ < 4.

The pointwise error |Uf (x)− Unf (x)| in R2 for n = 768
is shown in Figure 1. The kernels for this simulation were
centered at the first 768 data points generated by the dynam-
ical system. As expected, the error is minimized over the
manifold. The error plots for the data driven approximation
of the Koopman operator is similar.

Figure 2 shows how the C∞-norm error ‖Uf − Unf ‖∞
varies as the fill distance h is decreased. Since the manifold
M is not explicitly defined, we use the Euclidean metric,
which is equivalent to the intrinsic metric of M , to calculate
the fill distance h. Since we are plotting the variables on a

1612

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on November 13,2022 at 00:09:47 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Error Contour, Unf Approximation
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Fig. 2: C∞-norm Error, Unf Approximation

log scale, the slope of the error lines should be less than or
equal to t−s < 2.5. Note, the constant t < 3.5 is defined by
the choice of the kernel and the constant s satisfies d/2 =
0.5 < s = 1 ≤ d3.5e − 1. Figure 3 shows the equivalent
plot for the data-driven Koopman approximation. From these
plots, it is clear that the error decays at a rate higher than
the worst-case theoretical bound of t− s < 2.5.
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