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Modeling and Estimation of Linear and Nonlinear Piezoelectric
Systems

Sai Tej Paruchuri

(ABSTRACT)

A bulk of the research on piezoelectric systems in recent years can be classified into two cate-

gories, 1) studies of linear piezoelectric oscillator arrays, 2) studies of nonlinear piezoelectric

oscillators. This dissertation derives novel linear and nonlinear modeling and estimation

methods for such piezoelectric systems. In the first part, this work develops modeling and

design methods for Piezoelectric Subordinate Oscillator Arrays (PSOAs) for the wideband

vibration attenuation problem. PSOAs offer a straightforward and low mass ratio solution

to cancel out the resonant peaks in a host structure’s frequency domain. Further, they pro-

vide adaptability through shunt tuning, which gives them the ability to recover performance

losses because of structural parameter errors. This dissertation studies the derivation of gov-

erning equations that result in a closed-form expression for the frequency response function.

It also analyzes systematic approaches to assign distributions to the nondimensional param-

eters in the frequency response function to achieve the desired flat-band frequency response.

Finally, the effectiveness of PSOAs under ideal and nonideal conditions are demonstrated

in this dissertation through extensive numerical and experimental studies. The concept of

performance recovery, introduced in empirical studies, gives a measure of the PSOA’s effec-

tiveness in the presence of disorder before and after capacitive tuning. The second part of

this dissertation introduces novel modeling and estimation methods for nonlinear piezoelec-

tric oscillators. Traditional modeling techniques require knowledge of the structure as well



as the source of nonlinearity. Data-driven modeling techniques used extensively in recent

times build approximations. An adaptive estimation method, that uses reproducing kernel

Hilbert space (RKHS) embedding methods, can estimate the underlying nonlinear function

that governs the system’s dynamics. A model built by such a method can overcome some of

the limitations of the modeling approaches mentioned above. This dissertation discusses (i)

how to construct the RKHS based estimator for the piezoelectric oscillator problem, (ii) how

to choose kernel centers for approximating the RKHS, and (iii) derives sufficient conditions

for convergence of the function estimate to the actual function. In each of these discussions,

numerical studies are used to show the RKHS based adaptive estimator’s effectiveness for

identifying linearities in piezoelectric oscillators.



Modeling and Estimation of Linear and Nonlinear Piezoelectric
Systems

Sai Tej Paruchuri

(GENERAL AUDIENCE ABSTRACT)

Piezoelectric materials are materials that generate an electric charge when mechanical stress

is applied, and vice versa, in a lossless transformation. Engineers have used piezoelectric

materials for a variety of applications, including vibration control and energy harvesting.

This dissertation introduces (1) novel methods for vibration attenuation using an array of

piezoelectric oscillators, and (2) methods to model and estimate the nonlinear behavior ex-

hibited by piezoelectric materials at very high mechanical forces or electric charges. Arrays

of piezoelectric oscillators attached to a host structure are termed piezoelectric subordinate

oscillator arrays (PSOAs). With the careful design of PSOAs, we show that we can reduce

the vibration of the host structure. This dissertation analyzes methodologies for designing

PSOAs and illustrates their vibration attenuation capabilities numerically and experimen-

tally. The numerical and experimental studies also illustrate the robustness of PSOAs. In

the second part of this dissertation, we analyze reproducing kernel Hilbert space embedding

methods for adaptive estimation of nonlinearities in piezoelectric systems. Kernel methods

are extensively used in machine learning, and control theorists have studied adaptive esti-

mation of functions in finite-dimensional spaces. In this work, we adapt kernel methods for

adaptive estimation of functions in infinite-dimensional spaces that appear while modeling

piezoelectric systems. We derive theorems that ensure convergence of function estimates to

the actual function and develop algorithms for careful selection of the kernel basis functions.
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Chapter 1

Introduction

The smart materials community has explored various piezoelectric systems extensively in the

past three decades. Some of the primary motivations for these studies have been vibration

attenuation, energy harvesting, and high-precision actuator or sensor systems. Two recent

trends in the research on piezoelectric systems have focused on using arrays of piezoelectric

systems to improve beyond the limitations of an individual oscillator’s effectiveness, and the

investigation of the inherent nonlinearity of piezoelectric systems to achieve better perfor-

mance. This dissertation introduces a number of new results related to these two emerging

topics of research: the study of 1) broadband vibration attenuation using an array of linear

piezoelectric oscillators, and 2) modeling and estimation of nonlinear piezoelectric oscillators.

1.1 Passive Piezoelectric Subordinate Oscillator Arrays

(Chapter 2)

Many specific research topics motivate the investigations in this dissertation. For example,

we can think of state-switched piezoelectric vibration absorbers as systems that were inspired

by classical dynamic vibration absorbers. State-switched absorbers exploit the inherent ca-

pabilities of a piezoelectric system to modify parameters dynamically and thereby expand

the capability of mechanical DVAs. It is important to note that while making this argu-

ment, one should be very careful not to trivialize the complexity involved in constructing

1



2 Chapter 1. Introduction

the smart material systems based on classical mechanical solutions for vibration attenuation.

For instance, the DVAs are linear systems, whereas state-switched piezoelectric absorbers

are nonlinear. In recent times, researchers have explored the effect of multiple DVAs on

a host structure’s frequency response. By careful choice of the DVA properties, one can

achieve broadband vibration attenuation. The first topic discussed in this dissertation can

be thought of as a generalization of classical DVAs. Piezoelectric Subordinate Oscillator

Arrays, or PSOAs, are the smart material equivalent of Subordinate Oscillator Arrays, a

class of vibration attenuation systems that have been studied over the past decade. PSOAs

consist of an array of piezoelectric bimorphs with shunt circuits. By choosing the nondimen-

sional frequency distribution carefully, one can cancel resonant peaks of a host structure and

achieve a flat frequency response. Such systems have low mass ratios and provide broad-

band attenuation, in contrast to classical DVA designs. Furthermore, one can retune the

parameters of a PSOA to reduce the effects of modeling errors and disorder. Refer Chapter

2 for a detailed discussion on the advantages of using PSOAs.

In this dissertation, the dynamics of a PSOA attached to a host is modeled using a block

structure that permits the derivation of a closed-form expression for the frequency response

function from input to host response. Such an expression enables one to simplify the problem

of designing an array of piezoelectric oscillators for broadband vibration attenuation by

choosing a nondimensional frequency distribution of the whole array. Even though recent

studies have explored arrays of piezoelectric oscillators, none of them pose the problem of

broadband attenuation using such arrays as the choice of frequency distributions, and here

lies one of the novel contributions of this study. Further, this work explores the ability to vary

shunt capacitances to achieve the desired frequency distribution and hence, the desired flat

band frequency response. Finally, this work explores the performance recovery capabilities of

a PSOA when its performance has degraded due to disorder in structural parameters. Such
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robustness and retuning aspects of oscillator arrays are yet to be discussed in the literature.

Chapter 2 of this dissertation explores the theory, design, and experimental study of PSOAs.

Section 2.1 of the chapter motivates the study of PSOAs. Section 2.2 covers an extensive lit-

erature review of piezoelectric systems that have been developed over the past three decades.

Section 2.3 reviews the fundamentals of SOAs. It has been included because of the similarity

of SOAs to PSOA systems. Sections 2.4 and 2.5 in the chapter discuss the derivation of the

governing equations and a closed-form expression for the FRF of PSOAs, respectively. The

derivation of a closed-form expression for the FRF of PSOAs is possible only under certain

assumptions (capacitive shunts, for example), the details of which are given in Section 2.5.

The methodologies for PSOA design are discussed in detail in the same section. Section 2.6

lists the experimental procedure used to validate the vibration attenuation capabilities of

PSOAs. Sections 2.7 and 2.8 give an account of the extensive numerical and experimental

studies conducted to illustrate the effectiveness of PSOAs. The appendix at the end of the

chapter covers some of the finer details of the derivation in Sections 2.4 and 2.5.

The major contributions of the research work summarized in Chapter 2 are as follows:

1. This dissertation derives a theory for modeling of PSOA systems that results in a

closed-form expression of the FRF from input to host response.

2. This dissertation develops design methods based on the assignment of distributions

for nondimensional electromechanical parameters. These techniques do not require

optimization to achieve strong results in vibration attenuation.

3. This dissertation illustrates the effectiveness and robustness of PSOA systems under

ideal as well as non-ideal conditions through numerical studies. The topic of robustness

has not been studied systematically for piezoelectric systems prior to this dissertation.
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4. This dissertation validates and verifies the analysis through experiments.

5. Finally, the dissertation introduces a novel robustness metric, one that characterizes

the performance recovery abilities of PSOAs in the presence of disorder through ex-

periments.

Much of this chapter has been published in the following refereed journal article.

Sai Tej Paruchuri, John Sterling, Vijaya V N Sriram Malladi, Andrew Kurdila, Joseph

Vignola, and Pablo Tarazaga. Passive piezoelectric subordinate oscillator arrays. Smart Ma-

terials and Structures, 28(8):85046, August 2019. ISSN 0964-1726. doi: 10.1088/1361-665x/

ab2f5a. URL http://dx.doi.org/10.1088/1361-665X/ab2f5a

Other contributions on subordinate oscillator arrays described in Chapter 2 have appeared

in the following conference proceedings and journal articles.

1. Sai Tej Paruchuri, Vijaya V N Sriram Malladi, Pablo A Tarazaga, and Andrew J Kur-

dila. Expanding the Teaching of Single Frequency Vibration Absorption to Broadband

Attenuation using Subordinate Oscillator Arrays via Fettuccine Pasta, April 2020.

URL https://doi.org/10.31224/osf.io/qb4up

2. Sai Tej Paruchuri, Andrew Kurdila, and Joseph Vignola. Estimation of Distribution

Errors in Piezoelectric Subordinate Oscillator Arrays, November 2018. URL https:

//doi.org/10.1115/SMASIS2018-8065

3. Sai Tej Paruchuri, John Sterling, Andrew Kurdila, and Joseph Vignola. Piezoelec-

tric composite subordinate oscillator arrays and frequency response shaping for pas-

sive vibration attenuation. volume 2017-January, pages 702–707. IEEE, August 2017.

doi: 10.1109/CCTA.2017.8062544. URL http://ieeexplore.ieee.org/document/

http://dx.doi.org/10.1088/1361-665X/ab2f5a
https://doi.org/10.31224/osf.io/qb4up
https://doi.org/10.1115/SMASIS2018-8065
https://doi.org/10.1115/SMASIS2018-8065
http://ieeexplore.ieee.org/document/8062544/


1.1. Passive Piezoelectric Subordinate Oscillator Arrays (Chapter 2) 5

8062544/

4. Sai Tej Paruchuri, Andrew J. Kurdila, John Sterling, Amelia Vignola, John Judge,

Joe Vignola, and Teresa Ryan. Thermodynamic Variational Formulations of Subor-

dinate Oscillator Arrays (SOA) With Linear Piezoelectrics. In ASME. International

Design Engineering Technical Conferences and Computers and Information in Engi-

neering Conference, Volume 8: 29th Conference on Mechanical Vibration and Noise

():V008T12A068., volume 8, 2017. ISBN 9780791858226. doi: 10.1115/DETC2017-68056.

URL http://dx.doi.org/10.1115/DETC2017-68056

5. John A. Sterling, Joseph F. Vignola, Teresa J. Ryan, and Sai T. Paruchuri. Analysis

of increased damping in arrays of attached resonators. The Journal of the Acoustical

Society of America, 145(3):1824, March 2019. ISSN 0001-4966. doi: 10.1121/1.5101664.

URL https://doi.org/10.1121/1.5101664

6. John Sterling, Joseph Vignola, Jenna Gietl, Teresa Ryan, Noah Sonne, and Sai Tej S.T.

Paruchuri. Effect of Increased Damping in Subordinate Oscillator Arrays. Journal

of Physics: Conference Series, 1149(1):12006, 2018. ISSN 1742-6588. doi: 10.1088/

1742-6596/1149/1/012006. URL http://dx.doi.org/10.1088/1742-6596/1149/1/

012006

7. John Sterling, Sai Tej Paruchuri, Teresa Jean Ryan, Joseph Vignola, and Andrew J

Kurdila. Subordinate Oscillator Arrays: Physical Design and Effects of Error, April

2020. URL https://doi.org/10.31224/osf.io/kpv3r

8. John Sterling, Sai Tej Paruchuri, Pablo Tarazaga, Joseph Vignola, Andrew Kurdila,

V.V.N. Sriram Malladi, Teresa Ryan, Vijaya V N Sriram Malladi, and Teresa Ryan.

Piezoelectric Subordinate Oscillator Arrays: Performance Recovery and Robustness to

http://ieeexplore.ieee.org/document/8062544/
http://dx.doi.org/10.1115/DETC2017-68056
https://doi.org/10.1121/1.5101664
http://dx.doi.org/10.1088/1742-6596/1149/1/012006
http://dx.doi.org/10.1088/1742-6596/1149/1/012006
https://doi.org/10.31224/osf.io/kpv3r
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Uncertainty, August 2019. URL https://doi.org/10.1115/DETC2019-98092

9. Joseph Vignola, John Judge, John Sterling, Teresa Ryan, Andrew Kurdila, Sai Tej

Paruchuri, and Aldo Glean. On the Use of Shunted Piezo Actuators for Mitigation

of Distribution Errors in Resonator Arrays. In Proceedings of the 22nd International

Congress on Acoustics, 2016

10. Campbell R Neighborgall, Karan Kothari, V V N Sriram Malladi, Pablo Tarazaga,

Sai Tej Paruchuri, and Andrew Kurdila. Shaping the Frequency Response Function

(FRF) of a Multi-Degree-of-Freedom (MDOF) Structure Using Arrays of Tuned Vi-

bration Absorbers (TVA). In Conference Proceedings of the Society for Experimental

Mechanics Series, pages 317–326. Springer International Publishing, 2020. ISBN 978-

3-030-12684-1. doi: 10.1007/978-3-030-12684-1_33

1.2 RKHS Embedding Methods for Adaptive Estima-

tion (Chapters 3, 4 and 5)

The second topic presented in this dissertation is an entirely novel approach to modeling

and estimating nonlinearities in piezoelectric systems. Irrespective of the application, many

studies on piezoelectric systems have used linear models. However, for high field strengths,

these systems are best approximated by nonlinear models. The restriction to linear models

implies that we can only operate in the linear regime, which corresponds to low excitation

or field levels in the piezoelectric governing equations. Further, it also implies that the

nonlinearity in these systems cannot be exploited to achieve better performance.

The traditional approach to modeling nonlinear systems generally involves the inclusion of

higher-order terms in the electric enthalpy density. However, this inclusion implies prior

https://doi.org/10.1115/DETC2019-98092
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knowledge of the structure of the nonlinearity in the system. Quite recently, researchers

have tried using data-driven approaches to model nonlinear systems. Data-driven modeling

eliminates, or relaxes, the need for strong assumptions on the exact form or structure of

the underlying nonlinearity. However, a majority of these data-driven approaches fit linear

models to nonlinear systems. Further, it is well known that most data-driven models studied

in literature often ensure state convergence, but not parameter convergence. The convergence

of parameters, under additional constraints, can ensure that the model predicts the dynamics

beyond the scope of the input data.

In Chapters 3, 4 and 5, we introduce the RKHS based embedding approach for adaptive

estimation of nonlinearities in piezoelectric oscillators. In all these chapters, the kernel em-

bedding approach is used to represent the unknown nonlinear function/model as an element

of a Reproducing Kernel Hilbert space (RKHS). Such an embedding allows one to use the

properties of the RKHS when estimating the system. Adaptive estimators are then used

to estimate the unknown function in this infinite-dimensional space. Such a technique has

never been used before to model piezoelectric oscillators. This technique, along with suitably

defined persistence of excitation conditions, ensures convergence of the function estimate to

the true function. Further, the source of nonlinearity does not affect the effectiveness of this

approach. That is, it does not matter if the nonlinearity arise in the constitutive laws, the

boundary conditions, or elsewhere in the governing equations.

1.2.1 RKHS Embedding for Estimation of Nonlinear Piezoelectric

Systems (Chapter 3)

Chapter 3 focuses on formulating the RKHS embedding adaptive estimator for the piezo-

electric oscillator problem. In particular, this chapter considers the case when the unknown

nonlinear function f : R → R.
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The motivation behind the RKHS embedding and adaptive estimation approach is given

in detail in Section 3.1 of the chapter. The nonlinear governing equations of motion are

discussed in Section 3.2. The governing equations derived in this section were used in the

numerical simulations to represent the actual system. Section 3.3 covers the theory behind

the RKHS embedding and adaptive estimation in infinite-dimensional spaces. Section 3.4

presents the algorithm for adaptive estimation using RKHS embedding methods. This sec-

tion also covers the sufficient conditions for convergence of function estimates. Section 2.7

goes over the numerical results that validate the effectiveness of the estimator.

The following are the primary contributions of the research presented in Chapter 3.

1. This chapter studies the RKHS embedding strategy for adaptive estimation of non-

linearities in the governing equations of autonomous system. The approach is then

modified to estimate the nonlinearities in piezoelectric oscillator models, which are

nonautonomous systems.

2. The chapter studies convergence of state estimates of the RKHS embedding method

to actual states.

3. The chapter also analyzes conditions that guarantee estimated function convergence

to the true function in state-space.

4. The chapter illustrates the effectiveness of the adaptive estimator when the unknown

nonlinear function f : R → R.

The contributions of this chapter have appeared in the following peer-reviewed journal article.

Sai Tej Paruchuri, Jia Guo, and Andrew Kurdila. Reproducing kernel Hilbert space embedding

for adaptive estimation of nonlinearities in piezoelectric systems. Nonlinear Dynamics, 101
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(2):1397–1415, 2020. ISSN 1573-269X. doi: 10.1007/s11071-020-05812-2. URL https:

//doi.org/10.1007/s11071-020-05812-2

1.2.2 Kernel Center Adaptation in the Reproducing Kernel Hilbert

Space Embedding Method (Chapter 4)

In Chapter 3, the unknown nonlinear function is assumed to be a mapping f : R → R.

While implementing the RKHS adaptive estimator, it is important to choose the finite-

dimensional RKHS which approximates the infinite-dimensional RKHS in which the function

f is contained. This amounts to choosing kernel centers in the positive limit set. The

distribution of the kernel centers directly affect the approximation error of the function

estimate. When it is assumed that f : R → R, choosing evenly distributed kernel centers

is fairly straightforward. This is evident from the numerical example given in Chapter 3.

However, when f : Rd → R, it is not easy to choose evenly distributed kernel centers in the

positive limit set that is contained in Rd. Chapter 4 introduces two algorithms that enable

us to choose evenly distributed kernel centers in the positive limit set in a (semi-) automated

strategy.

Section 4.1 of Chapter 4 introduces the motivation behind the kernel center selection problem.

Section 4.2 goes over the theory of RKHS embedding for adaptive estimation. This section

also reviews the criteria for kernel center selection more generally in RKHS embedding

methods and illustrates the importance of choosing evenly distributed kernel centers using

the piezoelectric oscillator example. Sections 4.3 and 4.4 introduce algorithms for kernel

center selection based on centroidal Voronoi partitions and Kohonen self-organizing maps,

respectively. In Section 4.5, we use these algorithms for center selection in practical examples.

The contributions of the work in Chapter 4 are as follows.

https://doi.org/10.1007/s11071-020-05812-2
https://doi.org/10.1007/s11071-020-05812-2
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1. We develop criteria for kernel center selection for RKHS embedding methods for a

class of nonlinear systems.

2. We develop centroidal Voronoi tessellations based kernel center selection algorithm,

which can be implemented for systems for which we can sample the positive limit set.

This algorithm inherently make sure that the kernel centers are evenly distributed.

3. We develop kernel center selection algorithm based on Kohonen self-organizing maps,

which can be implemented for a generic class of nonlinear systems. This method can

be applied to many types of systems, including systems where the state-trajectory is

not contained in the positive limit set.

4. We illustrates the effectiveness of these algorithms for two different nonlinear systems,

including the piezoelectric oscillator example.

This work has been submitted for publication in a peer-reviewed journal. The reference of

the preprint on arxiv is given below.

Sai Tej Paruchuri, Jia Guo, and Andrew Kurdila. Kernel Center Adaptation in the Re-

producing Kernel Hilbert Space Embedding Method. September 2020. URL http://arxiv.

org/abs/2009.02867

1.2.3 Sufficient Conditions for Parameter Convergence over Em-

bedded Manifolds using Kernel Techniques (Chapter 5)

Persistence of excitation refers to a sufficient condition for convergence of the function esti-

mate error in adaptive estimation methods. In this chapter, we derive sufficient conditions

for persistence of excitation of RKHS of functions defined over manifolds. We study the

implication of this sufficient conditions when the RKHS is finite and infinite-dimensional.

http://arxiv.org/abs/2009.02867
http://arxiv.org/abs/2009.02867
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Section 5.1 of the chapter discusses the motivation behind the study of sufficient conditions

for persistence of excitation. Section 5.2 reviews some of the theory behind RKHS embedding

methods for adaptive estimation. In Section 5.3, we derive the sufficient conditions that

ensure persistence of excitation. Section 5.4 discusses the implications of using the sufficient

condition, when the RKHS is infinite-dimensional. Section 5.5 illustrates the implementation

of the sufficient condition in a practical example.

The primary contributions of this work are as follows:

1. We derive sufficient condition for persistence of excitation in a finite-dimensional

RKHS.

2. We show that when the actual function belongs to the finite-dimensional space, the

sufficient condition implies convergence of the function estimate to the actual function.

3. We prove that when the actual function belongs to an (infinite-dimensional) RKHS,

the sufficient condition implies that the function estimate error is ultimately bounded

by a constant. The constant depends on the approximation error between the infinite-

dimensional RKHS and the finite-dimensional RKHS.

4. We illustrate the effectiveness of the sufficient conditions using a piezoelectric oscillator

example.

The work in this chapter was submitted for publication in a peer-reviewed journal. The

preprint is available on arxiv, whose reference is given below.

Sai Tej Paruchuri, Jia Guo, and Andrew Kurdila. Sufficient Conditions for Parameter

Convergence over Embedded Manifolds using Kernel Techniques. September 2020. URL

https://arxiv.org/abs/2009.02866

https://arxiv.org/abs/2009.02866
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1.2.4 Other Contributions

Some of the other contributions on RKHS embedding methods for adaptive estimation have

appeared or under review in the following conference proceedings and journal articles.

1. Andrew J. Kurdila, Jia Guo, Sai Tej Paruchuri, and Parag Bobade. Persistence of

Excitation in Reproducing Kernel Hilbert Spaces, Positive Limit Sets, and Smooth

Manifolds. September 2019. URL http://arxiv.org/abs/1909.12274

2. Jia Guo, Sai Tej Paruchuri, and Andrew J. Kurdila. Persistence of Excitation in

Uniformly Embedded Reproducing KernelHilbert (RKH) Spaces (ACC). In American

Control Conference, 2020

3. Jia Guo, Sai Tej Paruchuri, and Andrew J. Kurdila. Persistence of Excitation in

Uniformly Embedded Reproducing Kernel Hilbert (RKH) Spaces. February 2019.

URL https://arxiv.org/abs/2002.07963

4. Jia Guo, Sai Tej Paruchuri, and Andrew J. Kurdila. Approximations of the Repro-

ducing Kernel Hilbert Space (RKHS) Embedding Method over Manifolds. July 2020.

URL http://arxiv.org/abs/2007.06163

http://arxiv.org/abs/1909.12274
https://arxiv.org/abs/2002.07963
http://arxiv.org/abs/2007.06163


Chapter 2

Passive Piezoelectric Subordinate

Oscillator Arrays

Abstract

Subordinate Oscillator Arrays (SOAs) attached to a host structure have been shown to achieve

flat attenuation of the frequency response over a band around a target natural frequency of

the host. Due to their sensitivity to disorders that can arise from sources such as fabrication

errors, as well as uncertainties in their structural properties or that of the host, SOAs can

be challenging to implement in some applications. To overcome this shortcoming, Piezoelec-

tric Subordinate Oscillator Arrays (PSOAs) are studied in this chapter. This chapter models

PSOAs using variational principles to facilitate the analysis and development of design strate-

gies. A closed-form expression for the frequency response function of the host structure is

then used to design the PSOAs with and without uncertainties. This chapter shows that the

flat attenuation over a frequency band around a harmonic of the host can be achieved by

assigning a distribution to the mechanical, electrical, or electromechanical properties of the

PSOAs. For instance, it is shown that choosing a distribution of capacitive shunt circuits can

achieve essentially the same qualitatively flat attenuation as that of classical SOAs. In this

sense, the approach in this chapter generalizes the results attained for conventional SOAs.

Finally, the chapter investigates the robustness of PSOAs, that is, their relative insensitivity

to types of uncertainties. It is shown that PSOAs afford the chance to ameliorate some types

13
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of sensitivities that prove problematic for SOAs that are purely mechanical in nature. The

notion of performance recovery is introduced; this measure quantifies how much attenuation

loss due to uncertainty in an initial SOA or PSOA design can be recovered by modification

of the electrical properties alone.

2.1 Introduction

The vibrations community has studied vibration attenuation of a host structure of given

structural properties using attached substructures for decades. One classic example is a

dynamic vibration absorber (DVA) attached to a host structure, which now appears as a

typical example in vibration textbooks [1]. By analyzing the frequency response function, one

can conclude that a DVA is a simple yet effective method for vibration attenuation. However,

DVAs achieve attenuation only in a narrow frequency band around a particular frequency

of operation. Any variation in the driving frequency can render the DVA ineffective, and it

is known that the response is amplified at some nearby, off-resonance driving frequencies.

Thus, if the driving frequency changes, a classical DVA has to be re-tuned, that is it must

be re-built, to match the new input frequency.

It is well-known that these potential disadvantages of a classical DVA have been addressed

in many ways. To achieve a broader frequency range of vibration reduction, damped vibra-

tion absorbers have been used. Many investigators have proposed methods which optimize

parameters of damped vibration absorbers [2, 3, 4, 5, 6]. Researchers have tried to overcome

these limitations by attaching the host structure to an array of linear vibration absorbers

whose natural frequencies form a band in the frequency domain [7, 8, 9, 10, 11]. This is

possible when the frequency band of the array is spaced around the host structure’s natural

frequency. These arrays of oscillators have been referred to in the literature as Subordinate
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Oscillator Arrays, or SOAs. At first, designing an SOA might look like a complicated task

since designers are forced to choose the structural properties of multiple absorbers. Vignola

et al. in [11] show that simple “closed form” design strategies, ones that do not require

optimization, that prescribe distributions representing the structural properties of the SOA

makes implementing SOAs much more straightforward in practice.

At the same time, a large number of piezoelectric systems have been studied to achieve

a variety of engineering goals. Some of the most recent are summarized in Table 2.1. In

Section 2.2 we review these references in more detail, but here we note that many of these

references seek to develop passive and active vibration absorbers. Other papers in the table

obtain vibration attenuation as a byproduct of their research: methods for energy harvesting

from structures naturally induce attenuation of structural response.

Perhaps surprisingly, there is little or no formal overlap between the study of mechanical

domain SOAs and the literature on composite piezoelectric systems to achieve vibration

attenuation. In particular, none of the references in Table 2.1 discuss, or even refer to,

the notion of introducing distributions or mixtures of properties (as in [7, 8, 9, 10, 11]) of

attached piezoelectric arrays connected to a host. In view of this fact, one of the overall

and guiding aims of this chapter is to explore how the philosophy of design for SOAs in [11]

in terms of distributions of properties can be extended to arrays of Piezoelectric SOAs or

PSOAs.

The answer to this general question is that assigning distributions of electromechanical prop-

erties of PSOAs defines a theoretically sound, closed form, simple, effective strategy to

achieve vibration attenuation in a host structure. From a technical standpoint, the efficacy

of the method can be traced to finding a closed form expression for the frequency response

function from input excitation to the host response. In this expression, which is valid for
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an arbitrary number of attached piezoelectric elements, all the electromechanical degrees of

freedom of the PSOA have been eliminated. It is the specific zero-nonzero block structure of

the coupled equations governing the PSOA and the (non-piezoelectric) host (see Equations

2.12 below) that allow the elimination of all piezoelectric states.

To be sure, the governing equations for a PSOA coupled to a host are indeed a very special

type of linear piezoelectric system, and such a simple reduction cannot be carried out in

general linearly elastic piezoelectric systems. Note that this zero-nonzero block structure does

not, in general, arise for instance in modal or finite element approximations of “monolithic”

linear, distributed piezoelectric continua models such as used for beams, plates, or shells,

such as those modeled in a general form in [12], or in many of the references in Table 2.1.

It is conceivable that such a block structure, and subsequent elimination of the piezoelectric

states, could be carried out with the introduction of static or Guyan reduction, the definition

of independent and dependent coordinates or other component mode synthesis approaches

[13]. See the comments following Equation 2.13. However, this process amounts to another

level of approximations beyond and in addition to discretization, one that is nontrivial and

sometimes impossible to carry out. In any event, it is the specific block structure of the

PSOA and host equations that enables the closed form expression for the FRF of the host

to be derived.

In the remainder of this chapter, we begin with a careful literature review of related elec-

tromechanical modeling of piezoelectric systems in Section 2.2. Section 2.3 summarizes the

relevant technical background for SOAs. Section 2.4 describes models for PSOAs, while Sec-

tion 2.5 summarizes the derivation of the frequency response function from the input to the

host response when it is equipped with a PSOA. The closed form design strategies, including

the specific discussion of mass-distribution-only and capacitance-distribution-only methods,

is given in Section 2.5. The experimental setup is introduced in Section 2.6, Section 2.7
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summarizes the numerical simulations of the experiment, and 2.8 reviews the experimental

results. The conclusions of the chapter are given in Section 2.9

2.2 Piezoelectric Structures Literature Review

General Type Reference(s)
SOAs [10] 2012, [11] 2009, [14] 2012, [15] 2016, [8] 2005, [7]

1996, [16] 2001, [17] 1997, [9] 2005
Qualitative, numerical, and
experimental study of piezo-
electric systems with shunt
circuits

[18] 1990, [19] 2000, [20] 2000, [21] 2001, [22] 2001, [23]
2006, [24] 2010, [25] 2011, [26] 2011, [25] 2011, [27] 2011,
[28] 2011, [29] 2012, [30] 2012, [31] 2012, [30] 2012, [31]
2012, [32] 2013, [33] 2014, [34] 2014, [35] 2016, [36] 2016,
[37] 2017

Mechanical SDOF or
MDOF system, state
switched or semi-active
piezoelectric DVAs

[38] 1999, [39] 1999, [40] 2000, [41] 2000, [42] 2001, [43]
2001, [44] 2002, [45] 2004, [46] 2006, [47] 2006, [48] 2008,
[49] 2009, [50] 2010, [51] 2011, [52] 2012

Gain scheduled or operating
mode switched piezoelectric
composite DVAs

[53] 1997, [54] 1998, [55] 2000,

Optimization-Based DVA
analysis and design

[56] 2003, [57] 2012, [58] 2014,

Piezoelectric energy harvest-
ing, unswitched or switched

[53] 1997, [54] 1998, [55] 2000, [59] 2010, [60] 2009, [61]
2007, [62] 2013, [63] 2006, [64] 2005, [65] 2009, [66] 2012,
[67] 2012, [68] 2012, [69] 2003,

Metamaterials and Wave
propagation design and tai-
loring

[70] 2011, [71], [72] 2013, [73] 2013, [74] 2015, [75] 2016,
[76] 2016, [77] 2017, [78] 2017, [79] 2017, [80] 2017

Table 2.1: Relevant Piezoelectric Systems Literature Summary

Researchers have studied active and passive structures based on piezoelectric materials for

vibration attenuation for some time, and an extensive literature on this topic has accumulated

over the years. The term piezoelectric system covers a wide range of nuanced systems that

vibration engineers and researchers have used for a variety of applications. Just within the
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field of vibration attenuation, we can classify piezoelectric systems into multiple categories

based on the methodology used to achieve attenuation. The objective of this section is to

highlight the similarities and the differences of such systems described in the literature with

the one discussed in this chapter.

Indeed, one glaring difference between many studies of composite piezoelectric systems and

that tackled in this chapter is that the latter system is made up of a family of linear oscillators

that are connected to the host structure. That is, the piezoelectric components are only

connected to the host, not to each other. Even though the oscillators in the PSOA are not

coupled to each other, the coupling arises through the host. Thus, the response of the PSOA

in itself is not of particular interest in this context, and the primary focus of this chapter is

on the input-output response of the host structure coupled with a PSOA. This fact stands in

stark contrast to many models of distributed active piezoelectric systems that are studied in

the literature. Furthermore, as mentioned above, the nature of the PSOA connection to the

host creates a coupled linear ODE that enables the derivation of a closed-form expression

for host frequency response function. This expression makes it easier to develop well-defined

design techniques with predictable performance.

Further, some of the topics that are not traditionally discussed in papers on linear piezoelec-

tric systems, but are addressed here, include: (1) the effect of robustness and uncertainty on

the performance of a design; (2) the development of a simple general design approach that

relies on the distributions of electromechanical properties of the PSOA; and (3) an analysis

of the performance recovery ability of a PSOA.

Because of the sheer number of studies of piezoelectric systems for vibrations attenuation,

the only the most relevant categories of research are reviewed here. Table 2.1 shows each

general category and a corresponding list of papers that fall under a category. Of course,
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some of these studies can fall under multiple categories. Such studies have been classified

based on the authors’ assessment of the principal features of the approach. Piezoelectric

systems have been studied for more than half a century, and one of the earliest references

is [81]. However, most of the papers presented in Table 2.1 are from studies conducted in

the past 25 years. In addition to the piezoelectric systems shown in Table 2.1, SOAs have

been included as a category due to its similarity to the system presented in this chapter.

PSOAs can be seen as a generalization of SOAs or as a particular case of coupled linearly

piezoelectric systems. Discussions on these systems appear regularly in this chapter since

these systems have inspired PSOAs.

The largest category in Table 2.1 is the one that contains piezoelectric equivalents of DVAs.

The papers in the category include qualitative, numerical and experimental studies of piezo-

electric oscillators with shunt circuits. In the studies, the mechanical part of the systems

has been modeled using lumped (both single degree of freedom and multi-degree of freedom)

as well as distributed parameter systems. The associated shunt circuits have been modeled

as passive (using RLC circuits) and active systems. When passive electrical circuits are

attached, these can be understood either as attempts to change the effective properties of

the whole system or to induce (additional) poles and harmonics into the system response of

the original structure. The papers in this category have discussed the modeling and design

of piezoelectric systems. While these systems provide a theoretical framework for the design

and analysis of PSOAs, they do not exploit the specific structural advantages of the PSOA

and host system. Further, these papers do not discuss the robustness of the systems and

performance recovery using shunt tuning. In essence, the PSOA systems can be thought of

as a combination of SOAs and the piezoelectric systems in this category.

The third category in Table 2.1 includes the systems that use state switching to achieve

parameter shifts in electromechanical properties of a structure. For example, it is well-
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known that by switching between two capacitances, one can change the effective stiffness

and hence the natural frequency of the system. These systems are sometimes considered as

semi-active systems since these systems switch between passive circuits, at the expense of

the relatively low energy consumed to power the switches, in contrast to modulating voltage

or current in the shunt circuit. Several studies in Table 2.1 investigating this effect can be

found in the past two decades. However, a general study of robustness of these systems has

not been undertaken in these references. We will argue that the use of flat-band solutions

like PSOAs can be an effective alternative to some of these systems, especially when the

frequency band of operation is known and restricted to a fewer number of resonant peaks.

This is demonstrated in particular in the conclusions in Section 2.9.

Another recent class of systems which have attracted the interest of the vibrations commu-

nity are those that are associated with metamaterials and waveguide design. Metamaterials

are composed of an identical array of substructures that are periodically distributed along

the length of the host structure. By doing so, a bandgap is created in the frequency response

of the host structure. Since the study of these systems is a relatively recent innovation, most

of the relevant studies have been focused on analyzing the basic effect of metamaterials in

the frequency domain, analyzing the limiting behavior, or on optimizing the placement of

the piezoelectric oscillators on the host structure. Issues like robustness or sensitivity to

perturbation in the location or the parameters of the piezoelectric oscillators are yet to be

fully understood. Furthermore, the host systems considered in most of the relevant stud-

ies are monolithic beams, plates, or shell structures. Because of the nature of the problem

of synthesizing metamaterials, it is reportedly more difficult to generalize the synthesis of

metamaterial structures to arbitrary geometry. This can be attributed to the fact that meta-

materials rely heavily on the periodicity of the substructures which can be hard to define

in complex structures. Theoretically, the governing equations of metamaterials systems and
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PSOAs look very similar. However, there are significant differences in the models as well as in

the intended goals of the overall system after synthesis. One primary difference is that sub-

structures are generally identical in metamaterials, whereas, parameter distributions dictate

the mix of material properties of the piezoelectric substructures in PSOAs. Metamaterials

create bandgaps by essentially moving existing resonant peaks outside of the frequency band

of interest. Whereas PSOAs extend the effect of DVAs to cancel an existing resonant peak in

the frequency response. This implies that modal spillover is very minimal in case of PSOAs

as opposed to that of metamaterials. However, it is important to note that the frequency

band of metamaterial systems are typically larger (spanning over multiple resonant peaks),

and sometimes much larger, than that of the PSOAs.

2.3 Subordinate Oscillator Arrays

mp

kp cp F(t)

m1

k1 c1

m2

k2 c2

mN

kN cN

Figure 2.1: Array of single degree of freedom oscillators attached to a host structure.

Figure 2.1 shows a simple SOA, consisting of N mass-spring-damper oscillators, attached to

a host structure of mass mp, stiffness kp, damping cp and natural frequency ωp [11, 14, 15].

The mass, stiffness and the damping of the nth oscillator in the SOA are denoted by mn, kn
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and cn, respectively. Since the PSOA approach used in this chapter is very similar to the

one used in [11], a brief summary of relevant theory is presented here. Vignola et al. in [11]

derived a closed form equation for the frequency response function (FRF) of the map from

the applied external force Fp to motion of the primary xp. The frequency response at a given

nondimensional frequency Ω can be calculated using the function

Xp(Ω)kp
Fp(Ω)

=

1− Ω2 +
iΩ

Qp

+
N∑

n=1

αn

 −Ω2
(
1 + iΩ

βnQn

)
1−

(
Ω
βn

)2
+ iΩ

βnQn




−1

, (2.1)

where

Ω := ω/ωp, αn :=
mn

mp

, βn :=

√
γn
αn

, γn :=
kn
kp
, Qn :=

√
mnkn
cn

. (2.2)

In Equations 2.1 and 2.2, the subscript p represents the properties of the primary or host

structure, and the subscript n represents the properties of the nth attached substructure.

The variable βn is the nondimensional frequency of each substructure in the SOA. It can

be expressed in terms of the nondimensional mass αn and the nondimensional stiffness γn

as shown in Equation 2.2. The constants Qn and Qp are the quality factors of the sub-

structure and the host structure, respectively. From Equation 2.1, it is evident that the

frequency response of the host structure attached to an SOA depends on the distributions

of the nondimensional mass, stiffness and frequency denoted by αn, γn and βn, respectively.

This implies that the problem of designing an SOA amounts to a problem of selecting three

distributions instead of 3N parameters for all the substructures. The interdependence of αn,

βn and γn implies that we have to construct distributions for only two of the three terms.
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2.3.1 Nondimensional Frequency Distributions

As mentioned earlier, the design of a flat frequency response using SOAs distributes the

frequency band of the SOA around the host structure’s natural frequency. This is achieved by

assigning an appropriate distribution to the nondimensional frequency βn. The distribution

used in [11] for βn is represented by equations of the form

βn =



∆
2

((
2(n−1)
N−1

)p

− 1

)
+ 1 for n ≤ N

2
,

∆
2

(
1−

(
2(N−n)
N−1

)p)
+ 1 for n ≥ (N+1)

2
.

(2.3)

The nondimensional frequency distribution defined by Equation 2.3 is a antisymmetric curve

centered at 1. The parameter ∆ in Equation 2.3 represents the bandwidth of the nondimen-

sional frequency distribution. Figure 2.2 shows the frequency response of the host structure

for various values of∆. The parameter p determines how the substructures are spaced around

the center. When p = 1, the frequency of the substructures are equally spaced around the

natural frequency of the host structure. When p = 0, the host structure is attached to a DVA

whose nondimensional frequency is 1. Finally, p = ∞ corresponds to the case where the host

structure is attached to two DVA’s with nondimensional frequencies equal to 1 − ∆/2 and

1+∆/2. Later in this chapter, it will be shown that a nondimensional frequency distribution

as expressed in Equation 2.3 can be used to design a PSOA.

2.3.2 Effect of Disorder on Performance of SOAs

Disorder or parameter uncertainties in systems can be induced due to fabrication errors

in substructures or measurement errors in structural properties of the host. Vignola et

al. in [15] studied the effect of disorder on the frequency response of a primary structure
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Figure 2.2: Broadband flat attenuation by SOA for varying bandwidths.

attached to an SOA. Figure 2.3 shows the degradation of SOA’s performance as the disorder

is increased. The figure shows a flat frequency response when uncertainty is low and a

0.8 0.9 1 1.1 1.2
non-dimensional frequency

10

15

20

25

30

no
rm

al
iz

ed
 d

is
p 

x/
x

st
  (

dB
) 

   
  

disorder = 0.0001
disorder = 0.001
disorder = 0.01
disorder = 0.1

Figure 2.3: Degradation of SOA’s performance with disorder.

non-flat response as uncertainty approaches 0.1. These results indicate that SOA’s desired

performance is limited by the precision of manufacturing and accuracy of measurements of

the host’s structural properties. One possible solution to overcome some of these issues is to

develop a tunable SOA, a PSOA, which potentially allows for effective change of structural
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properties after fabrication.

2.4 Host Structure with PSOA Model

In this section, the H variational principle which is based on extremization of the electric

enthalpy and is discussed in A.1, will be used to model a piezoelectric subordinate oscillator

array attached to a host structure. The canonical PSOA consists of a series of bimorph

beams with shunt circuits connected to them. The shunt circuit of kth bimorph beam in the

array consists of a resistor Rk, capacitor Ck and current source ik in parallel. Starting with

a distributed beam model, finite dimensional approximations are introduced. Ultimately

each oscillator in the PSOA is modeled as a single degree of freedom system. Figure 2.4

shows a piezoelectric subordinate array attached to a host structure. The dimensions of

each appendage in the PSOA are shown in Figure 2.5. The host structure is assumed to

have two inputs, base motion z and applied force Fp.

Primary
Structure

Bimorph
Beam

Figure 2.4: A PSOA attached to a host structure.
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Figure 2.5: Dimensions of a substructure in a PSOA.

If xp represents the absolute motion of the primary structure and wi is the relative motion

of appendage i in a PSOA with N substructures, the kinetic energy of the system shown in

Figure 2.4 can be expressed as

T =
1

2
mp (ẋp − ż)2︸ ︷︷ ︸

I

+
N∑
i=1

{
1

2

∫ Li

0

ρiAi

(
ẋp +

∂wi

∂t
− ż

)2

dxi︸ ︷︷ ︸
II

+
1

2
mi

(
ẋp +

∂wi

∂t
(t, Li)− ż

)2

︸ ︷︷ ︸
III

}
, (2.4)

where ρi, Ai and Li are the density, cross sectional area and length of the bimorph, respec-

tively. The cross sectional area is defined as Ai := 2ts,i · Wi, where 2ts,i and Wi are the

thickness and width of the substrate as shown in Figure 2.5, respectively. Further, mi is

the tip mass attached to the bimorph, and mp is the host structure’s mass. The terms I, II

and III in Equation 2.4 represent the kinetic energy contributions from the primary mass

of the host structure, distributed mass of each appendage in the SOA and tip mass of each

appendage in the SOA respectively.

After following the steps shown in B, the kinetic energy can be expressed in the quadratic
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form

T =
1

2

{
Ẇ T

1 · · · Ẇ T
n (ẋp − ż)

}


M11 · · · 0 M1p

... . . . ... ...

0 · · · Mnn Mnp

MT
1p · · · MT

np Mpp





Ẇ1

...

Ẇn

(ẋp − ż)


, (2.5)

where the vectorsW1, . . .Wn is defined as the vector of temporal components of the Galerkin

approximation wi(x, t) =
∑n

j=1Ψij(x)Wij(t) = ΨT
i (x)Wi(t). The terms M11, . . . ,Mnn,

M1p, . . . ,Mnp and Mpp are defined in B.

In order to derive an expression for the electromechanical potential, we first derive a rep-

resentation for the electric enthalpy density. The linear electric enthalpy density of each

appendage is calculated from the following expression in [82],

Hi :=
1

2
CE

i S
2
i − eiSiEi −

1

2
εSi E

2
i , (2.6)

where Ei is the electric field, CE
i is the material stiffness at constant electric field, Si :=

−zi ∂
2wi

∂x2
i
is the axial strain in a Bernoulli-Euler beam, ei is the piezoelectric constant, εSi is the

permittivity of the piezoelectric material at constant strain. After substituting the expression

for electric enthalpy density into Equation 2.35, the total electromechanical potential of a

PSOA attached to a host structure will have the form

VH :=
1

2
Kpx

2
p︸ ︷︷ ︸

IV

+
N∑
i=1

VHi︸︷︷︸
V

· (2.7)

In the above equation, term IV represents the strain energy of the host structure’s spring with

stiffness Kp. Further, term V represents the electromechanical potential of each piezoelectric
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oscillator in the PSOA and is expressed in the form

VHi =
1

2
W T

i KiiWi −BT
i WiVi −

1

2
DiV

2
i − 1

2
CiV 2

i , (2.8)

Here, Di is the effective capacitance of the piezoelectric material, Ci is the shunt capacitance,

BT
i is the control influence matrix and Vi is the voltage across the shunt circuit. The

intermediate steps that lead to the above expression are discussed in C. The virtual work

done by the nonconservative electromechanical loads will have contributions from the force

input, current source, resistor and damping in the system. The virtual work done is expressed

in the form

δWnc = Fpδ (xp − z) +
N∑
k=1

ikδλk −
N∑
k=1

λ̇k
Rk

δλk + δWnc,visc, (2.9)

where λk is the flux linkage across the shunt circuit, ik is the current source in the shunt

circuit, Rk is the resistor in the shunt circuit and Fp is the force applied to primary mass mp.

The virtual work done by mechanical damping can be derived from δWnc,visc = δqTQvisc,

where Qvisc is the generalized forces of viscous damping and q is the set of generalized

coordinates defined by the vector

q =

{
W T

1 W T
2 . . . W T

N xp

}T

.

The generalized forces due to damping Qvisc can be derived from the expression Qvisc = −∂F
∂q̇

where

F := q̇T

 C 0

0T Cp


︸ ︷︷ ︸

C

q̇ (2.10)
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is the Rayleigh dissipation function. In Equation 2.10, Cp is the damping of the primary

structure and C := diag(C11,C22, . . . ,CNN), where Cnn is the damping matrix of the nth

oscillator in the PSOA. After simplification, the virtual work done by the viscous damping

will have the form

δWnc,visc = −δqTCq̇. (2.11)

The equations of motion is obtained, as discussed in D, by using the H Variational Principle.

The most general finite dimensional model is then given by

 M Mp

MT
p Mpp


 Ẅ

ẍp

+

 C 0

0T Cp


 Ẇ

ẋp

+

 K 0

0T Kp


 W

xp

−

 B

0

V =

 F̂p1

F̂p2

 ,

(2.12)

where F̂p1 = Mpz̈, F̂p2 = Fp +Mppz̈ and

BT Ẇ + DV̇ + ζΛ̇ − i + CV̇ = 0· (2.13)

It should be noted that this equation of motion allows for the possibility of multi-mode ap-

proximations of each PSOA appendage.

Also, as a part of comparison, it is known that the actuator equations for a monolithic, dis-

tributed, linear piezoelectric composite (such that those that arise from piezoelectric beams,

plates, or shells (see [12])) has the form

MmonoẄ + CmonoẆ + KW = BmonoV

with Mmono, Cmono, Kmono symmetric, sparse and banded. However, these matrices are not

guaranteed to have the block zero structure of Equation 2.12. As mentioned in the in-
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troduction, it may be possible using component mode synthesis to drive the equation to

a similar form. It we can choose W = [WT
I WT

D]
T = [ΨT

I Ψ
T
D]

T where [ΨIΨD]K[ΨT
I Ψ

T
D]

T =

diag(KII , KDD) and [ΨIΨD]C[ΨT
I Ψ

T
D]

T = diag(CII , CDD), then the more general Equation

can be cast in a form somewhat similar to Equation 2.12. However, this definition can result

in new, nonintuitive definitions of states.

2.5 PSOA Design using Frequency Response Function

In this section, the closed form FRF from the input force Fp to the displacement xp of the

host structure is derived when each subordinate element is modeled with a single degree of

freedom. Next, various strategies that can be implemented in the design of the PSOA are

discussed. As it will become evident in the current section, the resistor and the current source

in the shunt circuit are not necessary for passive PSOAs designed for vibration attenuation.

The values R−1 and i are assumed to be zero in the subsequent calculations. Further, it

is assumed that there is no base excitation to simplify the derivation of the closed-form

expression. After making use of these assumptions, integrating Equation 2.13 with zero

initial conditions generates an expression for voltage of the form

V = −(D + C)−1BTW· (2.14)

Substituting the expression for voltage into Equation 2.12 and taking the Laplace transform

will result in the expression

 Ms2 + Cs+ K̂ Mps
2

MT
p s

2 Mpps
2 + Cps+Kp


 W

xp

 =

 0

fp(s)

 , (2.15)
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where

K̂ := K + B(D + C)−1BT . (2.16)

It is evident from the expression for K̂ that the shunt capacitance induces a change in the

stiffness of the PSOA. As shown in E, the FRF can be obtained by evaluating this transfer

function along the imaginary axis, i.e. by substituting s = iω. The nondimensionalized

frequency response function, obtained by dividing both sides of Equation 2.64 by the stiffness

of the host structure Kp, is expressed as

xpKp

fp
=

1− Ω2 +
iΩ

Qp

+
N∑

n=1

α̂n

Ω2 +
−Ω2

(
1 + iΩ

βnQn

)
1− (Ω

β
)2 + iΩ

βnQn

−1

, (2.17)

where

Ω = ω

√
Mpp

Kp
, α̃n =

Mnn

Mpp
, βn =

√
γn
α̃n

, γn =
K̂nn

Kp
, Qn =

√
MnnK̂nn

Cnn
, α̂n = α2

nα̃n.

(2.18)

The definitions of Mnn, Cnn, Knn and αn are available in E. Equation 2.17 is a principal

result for electromechanical systems in this chapter and should be compared to Equation 2.1

for purely mechanical systems.

2.5.1 Methodology for PSOA Design

As discussed in the earlier sections, flat broadband attenuation of frequency response can be

achieved when the bandwidth of the SOA is distributed around the host structure’s natural

frequency. The SOA bandwidth is defined as the range of isolated natural frequencies from

the smallest possible resonant frequency to the largest resonant frequency. In this subsection,
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two systematic approaches to achieve the good designs will be discussed. Figure 2.6 shows

a PSOA, designed using the two approaches, attached to a host structure. The equations of

motion of piezoelectric oscillator n in the PSOA can be extracted from Equations 2.12 and

2.13. They have the form

MnnẄn +CnnẆn +KnnWn −BnVn = −Mnpẍp, (2.19)

BT
n Ẇn + (Dn + Cn) V̇n +

Vn
Rn

− in = 0. (2.20)

As mentioned at the beginning of this section, the shunt circuit consists of only a capacitor for

each appendage. Hence, the terms corresponding to resistor and current source in Equations

2.20 can be set to zero. Further, using single mode approximation simplifies the vectors

Mnn, Mnp, Cnn, Knn, Bn and Wn in Equations 2.19 and 2.20 to scalars Mnn, Mnp, Cnn,

Knn, Bn and Wn, respectively. With these assumptions, Equations 2.19 and 2.20 simplify to

MnnẄn + CnnẆn +KnnWn −BnVn = −Mnpẍp, (2.21)

BnẆn + (Dn + Cn) V̇n = 0. (2.22)

Assuming zero initial conditions, Equation 2.22 can be integrated and rewritten as an ex-

pression for voltage of the form

Vn = − Bn

Dn + Cn
Wn. (2.23)
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Substituting the expression for voltage into the Equation 2.19 results in

MnnẄn + CnnẆn +

[
Knn +

B2
n

Dn + Cn

]
︸ ︷︷ ︸

K̂nn

Wn = −Mnpẍp, (2.24)

For a system represented by a second order differential equation as shown in Equation 2.24,

the natural frequency will be

ωn =

√
Knn +

B2
n

Dn+Cn
Mnn

=

√
K̂nn

Mnn

. (2.25)

Equation 2.25 gives the isolated natural frequency of an oscillator in a PSOA. The system

parameters Mnn, Knn, Bn, Dn and Cn of each oscillator are chosen in such a way that

the PSOA achieves the desired bandwidth. The following paragraphs discuss two specific

strategies for making these choices.

Design by Tip Mass Distribution

The first approach varies the tip mass to achieve the necessary natural frequency distribution.

After fixing all the parameters except tip mass, the nondimensional mass distribution α̃n

can be calculated using the relation given in Equation 2.18. The nondimensional mass of

oscillator n is

α̃n :=
γn
β2
n

:=
Mnn

Mpp

=
Mnn +mnn

mp +
∑

i(Mi +mi)
, (2.26)

which can be rearranged as

m1 +m2 + · · ·+
(
1− Ψ(L)2

α̃n

)
mn + · · ·+mN =

∫ L

0
ρAΨ(x)2dx

α̃n

− (mp +NρAL). (2.27)
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The tip mass distribution that can achieve the desired frequency distribution can be calcu-

lated using the relation

m = (IN − P)−1Q, (2.28)

with

P := diag

(
Ψ(L)2

α̃1

,
Ψ(L)2

α̃2

, · · · , Ψ(L)2

α̃N

)
and (2.29)

Q :=


(∫ L

0 ρAΨ(x)2dx

α̃1
− (mp +NρAL)

)
...(∫ L

0 ρAΨ(x)2dx

α̃N
− (mp +NρAL)

)


T

. (2.30)

Design by Capacitance Distribution

The second approach specifies stiffness properties by varying shunt capacitance while fix-

ing the other parameters. Similar to the first approach, all parameters except the shunt

capacitance are kept constant. The nondimensional stiffness of oscillator n

γn := β2
nα̃n :=

K̂nn

Kp

. (2.31)

The shunt capacitance of oscillator n that can produce the required nondimensional frequency

can be calculated using the relation

Cn =
B2

n

K̂nn −Knn

−Dn. (2.32)
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The advantages and the limitations of both the approaches will be discussed along with the

numerical results in Subsection 2.7.1.

Primary
Structure

m
tip1

m
tipN

C
1

C
N

Figure 2.6: PSOA designed using hybrid approach.

2.6 Experimental Procedure

Performance of PSOAs in attenuating resonant peaks was tested on an aluminum beam

shown in Figure 2.7. The aluminum beam of dimensions 29.7 cm × 7.67 cm × 1.275 cm

(l × w × t) was clamped at one end, while the bimorphs were attached at its free end. A

shaker was attached to the beam at a distance of 13.2 cm from its tip. The frequency

response functions of the structure were evaluated between the input force measured by

a PCB dynamic force transducer and the tip-velocity measured with a single point laser

vibrometer (PSV-100). The attenuation in the resonant peaks of the aluminum beam was

monitored from the FRFs measured with an LMS SCADAS DAQ system. Initially, baseline

FRF of the host structure (without PSOA) was recorded, which was later compared to

FRFs of the modified structure as piezoceramic bimorphs (Part Number: T226-H4-503Y)
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were attached to it in succession. The material and geometric properties of these PSOAs

are summarized in Tables 2.2 and 2.3. Even though the bimorphs have an aspect ratio

that resembles a rectangular plate rather than a beam, the fundamental frequency of the

cantilevered bimorphs is the only resonant frequency in the bandwidth of interest. Therefore,

each PSOA can be considered as a tuned single degree-of-freedom dynamic oscillator.

The performance of four PSOAs, each with 2, 4, 6, 8 bimorphs, was studied during the

experiments. The natural frequencies of the bimorphs in the PSOAs were estimated from

the FRFs between the base-acceleration and the tip velocity of the bimorph attached to the

host structure. For these experiments, the length of the bimorphs was varied to achieve the

desired frequency distribution and tip masses were only added once the maximum length of

bimorphs was reached. Because of the geometry of the PSOA, it was not possible to vary tip

mass alone: the size of the tip masses would interfere with one another. Thus, the practical

constraints in the setup play a critical role in determining the parameters that can be varied

to achieve the desired nondimensional frequency distribution. Theoretically, the length and

the tip mass variation should be sufficient to tune the natural frequencies of the bimorphs.

However, due to uncertainties in the experiments, the length was fixed first, the tip-mass

(if required) was added next, and finally, the shunt capacitance was tuned to approach the

desired natural frequency.

Furthermore, the performance of the PSOAs with open shunt circuits was evaluated under

varying dynamic properties of the host structure. Once a tip-mass was added to the host, the

PSOAs were then re-tuned using the shunt capacitances. The performance recovery achieved

by the PSOAs after shunt tuning was studied for three different tip masses, 31.60 g, 62.81 g,

and 81.29 g. The results of the above-mentioned experiments are discussed in Section 2.8.
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Figure 2.7: Experimental Setup.

2.7 Numerical Results

We simulated the response of the host structure attached to the PSOAs that were designed

using approaches presented in the previous sections under ideal as well as non-ideal con-

ditions. To better contrast the simulation results for different cases, the host’s structural

properties, the nondimensional frequency distribution βn, the number of substructures N

in the PSOA, and majority of the fixed parameters of the PSOA were maintained con-

stant for all simulations. The host structure was assumed to have a mass mp = 1000 kg,

stiffness Kp = 1273300 N/m and a very low damping ratio ζp = 0.0001, which places its

natural frequency at 35.68 rad/sec. The nondimensional frequency distribution βn shown

in Figure 2.8 was used for the simulations and was generated using Equation 2.3 with

∆ = 0.09 and p = 0.9. We assigned the following values to the fixed parameters of the SOA:
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C = 6.9e + 10 Pa, ρm = 2.3e + 3 kg/m3, N = 25, L = 0.5 m, W = 0.025 m, 2ts = 0.003 m,

a = 0.25 L, b = 0.75 L, e31 = −10.4 C/ m2, ε = 13.3 nF/m, ζSOA = 0.01. In the following

subsections, we will discuss the results we obtained for the various simulation cases.

0 5 10 15 20 25
0.95

1

1.05

Figure 2.8: Nondimensional frequency distribution obtained using equation 2.3 with ∆ =
0.09 and p = 0.9.

2.7.1 PSOA Simulations under Ideal Conditions

In the first set of simulations, we assumed that we had perfect knowledge of host structural

properties, and the fabricated PSOA adhered strictly to the design specifications.

Implementing the first approach to develop a piezoelectric array of 25 substructures with no

shunt circuits resulted in a tip mass distribution as shown in Figure 2.10. This result was

obtained for piezoelectric patch thickness of tp = 0.0005 m. When we simulated the effect

of PSOA with this tip mass distribution on the host structure, we obtained the frequency

response shown in Figure 2.9. As the figure portrays, the addition of the PSOA reduces

the steady state displacement of the host structure to approximately 1% of its actual steady

state displacement at the resonant frequency. This result indicates that PSOAs can indeed
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achieve a reasonably flat bandwidth in the host structure’s resonant peak region. Figure 2.9

also shows that the magnitude increase outside this region is negligible. This is a substantial

qualitative improvement over a classical DVA.

One of the critical aspects to consider during the design of SOAs, as well as the DVAs, is

the maximum displacement of the substructures. We plotted the frequency response from

the force input Fp to the displacement of the 13th substructure W13, which can be seen in

Figure 2.11. As evident from the figure, to ensure the displacement is within the mechanical

limitations, the maximum force input to the host structure should not exceed 103 times the

maximum displacement allowable in the substructure.
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10-2
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With SOA

Figure 2.9: Frequency response function from force input Fp to displacement xp of a host
structure with and without a PSOA. The PSOA was designed using first approach.

In the second set of simulations, we tested a PSOA designed using a distribution of capacitive

shunts. We calculated the total tip mass of each substructure to be mi = 0.06944 kg from

the prescribed total mass ratio µ = 4.065 × 1e − 3. Assuming the piezoelectric thickness

as tp = 0.003 m, we obtained the capacitance distribution shown in Figure 2.13. Figure

2.12 shows the frequency response of the host structure when the shunt capacitors followed
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Figure 2.10: Tip mass distribution used to achieve the frequency response shown in Figure
2.9.
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Figure 2.11: Frequency response function from force applied Fp on the host structure to the
displacement W13 of the 13th substructure in the PSOA designed using first approach.

the distribution shown in Figure 2.13. The primary implication of this result is that it

is possible to achieve flat attenuation using mechanically identical oscillators. One of the

advantages of using a capacitive shunt distribution is that it allows the designer to impose
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a mass ratio. Prescribing an actual mass ratio is problematic in the first approach since

the tip masses are unknown during the initial stages of design. Hence, design using the

first approach requires an iterative process. On the other hand, it is important to note that

the PSOAs designed using the second approach usually require piezoelectric patches whose

thicknesses are no longer negligible. In such cases, the model developed using modal shape

functions is interpreted as an approximation whose accuracy must be validated. In some

instances, individual variations of tip-mass or the capacitance are not sufficient to generate

the necessary nondimensional frequency distribution. In such cases, multiple parameters

must be simultaneously varied as shown in the experimental results.

25 30 35 40 45
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Without SOA
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Figure 2.12: Frequency response function from force input Fp to the displacement of the
host structure attached to a PSOA designed using second approach.

2.7.2 PSOA Simulations under Non-Ideal Conditions

In the previous subsection, we demonstrated the effectiveness and the advantages of the

PSOAs through simulations. But the simulations relied on ideal conditions which entailed
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Figure 2.13: Capacitance distribution used to achieve the frequency response shown in Figure
2.12.

perfect knowledge of the host structure’s properties and a high level of precision during

manufacturing. These assumptions may not be justified in some applications. Further, the

structural properties of some systems can degrade or evolve over time which can render the

SOA ineffective. In this subsection, we will discuss the performance of the PSOAs under

non-ideal conditions and analyze the robustness of PSOA systems in the presence of disorder.

In the following set of discussions, we restrict our analysis to the PSOA designed using the

first approach. The piezoelectric patch thickness value used for this set of simulations is

tp = 0.001 m.

Assume that the host’s structural properties used in the previous simulations are inaccurate

and the actual host structure has a stiffness which is 10% less than what we measured.

Figure 2.14 shows the effect of this error on the frequency response of the host. The PSOA,

which has no capacitive shunt, is expected to generate a flat frequency response. However,

the presence of error in host structure model induces a peak in the frequency response as
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shown in Figure 2.15. The induced peak disappeared, when we attached the PSOA with

shunts of capacitance Cn = 1 F. As can be seen in Figure 2.15, we were able to achieve a

frequency response very similar to the expected response after shunt tuning.
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Measured Frequency Response
Actual Frequency Response

Figure 2.14: Frequency response function from the force applied Fp to the displacement xp
of the host structure. Effect of 10% disorder in host structure’s stiffness on the natural
frequency can be seen in this plot.

Similarly, let us assume that the fabricated PSOA designed in Subsection 2.7.1 did not

comply with the design specifications. To imitate this disparity in the design and fabricated

SOA’s parameters, we introduced a−10% error in the stiffness K of the SOA. The ideal PSOA

that we designed in Subsection 2.7.1 attached to a shunt capacitance of Cn = 1 F would have

produced a spectrally flat response as shown in Figure 2.16. However, the fabrication errors

induce a peak in the frequency response as shown in the same figure. After reducing the

shunt capacitance to Cn = 1e−9 F, we were able to achieve a frequency response that almost

mimics the expected response.
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Figure 2.15: Frequency response function from the force applied Fp to the displacement xp of
a host structure. This plot shows that the effect of disorder on the host structure’s response
can be mitigated by shunt tuning.
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Figure 2.16: Frequency response function from the force applied Fp to the displacement xp
of a host structure attached to a PSOA. An error of −10% in the stiffness of the PSOA
deteriorates the host structure’s response. However, the effect of error is eliminated after
shunt tuning.
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2.8 Experimental Results

As discussed in earlier sections, the first natural frequency of an aluminum beam was tar-

geted for experimentally studying the performance of the PSOAs. Figure 2.17 shows the

experimental frequency response function of the unmodified host (red) as well as the FRFs

of the host with PSOAs. The structural details of the oscillators in the PSOA are tabulated

in Table 2.2. While the PSOA with two oscillators was able to achieve a 25 dB reduction,

adding more oscillators resulted in a wider flattening of the bandwidth with at least 30 dB

attenuation. The natural frequencies of the oscillators in the PSOA were selected such that

their nondimensional frequencies would follow the selected distributions shown in Figure

2.18. Revisiting Equation 2.18, the nondimensional frequency is expressed as the ratio of

nondimensional stiffness and nondimensional mass, which also included mass of the sub-

ordinate oscillators. However, in Figure 2.18, the nondimensional frequency is defined for

experimental results as the ratio of the damped natural frequency of the bimorphs to the

damped natural frequency of the unmodified host. This definition is a good approximation

of the theoretical nondimensional frequency, as it easier to estimate during experimentation.

Based on Figure 2.17, it is evident that increasing the number of oscillators does not always

have significant attenuation gains, especially considering the increase in the mass ratio at

each step. However, the advantage of having more oscillators in PSOAs comes from an

increase in its robustness. The robustness of vibration attenuation via PSOAs is evaluated

through artificially changing the host’s natural frequency by adding tip mass. Figure 2.19

shows the change in the FRFs of the host structure with addition of tip masses. Consequently,

the nondimensional frequency distribution of the PSOA is not tuned for the modified host.

Even for a 15 Hz shift in natural frequency (or 13 % change in nondimensional frequency),

PSOAs with four and eight oscillators were able to attenuate the resonant peak by about

25 dB, as seen in Figure 2.20. It can also be seen that the PSOA with higher bandwidth (8
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Bimorph Properties
Substrate Material Brass

Total mass 10.3 (g)
Wi 31.75 (mm)
tp,i 0.27 (mm)
2ts,i 0.11 (mm)

Table 2.3: Properties of bimorphs used in experiments
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Figure 2.17: Experimental FRF from base acceleration to the tip velocity of the host struc-
ture with PSOAs.

oscillator case) resulted in a flatter response; thereby displaying the robustness of PSOAs.

Additionally, in case of the PSOA with eight oscillators, shunt tuning was not necessary. On

the other hand, shunt tuning improved the performance of the PSOA with four oscillators

as shown in Figure 2.21.

In this figure, the red colored line (no tip mass) is the response of the original system with

PSOAs. With addition of tip masses to the host, the natural frequency of the host decreases

and the magnitude increases at lower frequencies. As the PSOAs are tuned with shunted

circuits, the magnitude is partially recovered as pointed out in this figure. While the dashed
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Figure 2.18: Nondimensional frequency distribution of the PSOAs shown in Figure 2.17. The
oscillators in the PSOAs are referenced out of order in the x-axis to maintain the symmetry
and facilitate comparison of the nondimensional frequency distributions. The properties of
all the oscillators can be referred from Table 2.2 based on the oscillator reference.

line correspond to open circuits, the solid lines correspond to the PSOAs with closed shunts.

The difference in peak magnitudes gives a measure of the recovered performance. Loci of

the peaks of open and closed circuit lines are also seen in Figure 2.21. Extrapolation of these

lines provides us with an idea of how the PSOA performs with changes or uncertainty in the

dynamics of the host structure. It is important to notice that these lines are not parallel

to each other. And this agrees with our intuition since we expect the performance recovery

ability of the PSOA to decrease with increasing uncertainty. From a design perspective,

we want the performance recovery ability of a PSOA to be as high as possible. This can

be achieved by piezoelectric oscillator shunt tuning, which can be achieved by increasing

the thickness of the bimorph’s piezoelectric patches. Another approach would be to include

negative capacitance [52, 83]. In situations where uncertainty can be higher, these factors

should be considered, however these discussions are beyond the scope of the current chapter

and hence not addressed rigorously.
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Figure 2.19: The variation of the host structure’s FRFs with different tip masses. The tip
masses mimic the degradation of host’s properties over time.
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Figure 2.20: Experimental FRF from base acceleration to the tip velocity of the host struc-
ture with 4 and 8 oscillator PSOAs.

Figure 2.22 shows the FRFs of the host as well as the host with eight oscillators PSOA

up to 2500 Hz. This figure is presented here to show that the amount of modal spillover

outside the PSOA bandwidth. The performance deterioration is minimal in the displayed
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Figure 2.21: Four oscillator PSOA’s performance recovery using shunt tuning.

frequency range. Also, the second and third modes have been attenuated by about 10 dB.

This can be attributed to the damping of and the absorption of high frequencies energies by

the oscillators tuned to the first natural frequency.

2.9 Conclusions

This chapter has shown that PSOAs can realize and improve on the benefits of ordinary

SOAs and tunable DVAs. They can be used to achieve a flat response in the frequency

domain and have the ability to address uncertainties in structural properties, at the expense

of added complexity. The zero-nonzero block structure of the coupled PSOA and host sys-

tem enables assignment of distributions to nondimensional electromechanical parameters.

As shown both numerically and experimentally in this chapter, the assignment of such dis-

tributions dramatically simplifies the design process and can eliminate the need for complex

optimization methods. Furthermore, the idea of performance recovery is introduced to ana-

lyze the ability of PSOA’s performance under uncertain structural parameters. It was shown
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Figure 2.22: Broadband experimental FRF from base acceleration to the tip velocity of the
host structure with 8 oscillator PSOA. The FRF shows that the modal spillover across a
large frequency range is minimal. Additionally, the second and the third natural frequencies
are also attenuated.

experimentally that for limited levels of uncertainty, passive capacitance tuning could recover

the PSOA’s flat frequency bandwidth after loss due to uncertainty. The tuning techniques

described in this chapter are limited to passive methods. As a topic of future study, it would

be of interest to analyze how active circuits can also be implemented to tune the PSOAs

adaptively.

A Thermodynamic Variational Principles

Modeling of piezoelectric systems has been studied for decades, and various methods have

been developed to model linear as well as nonlinear piezoelectric systems. Even though

Newtonian techniques can be used to model piezoelectric systems [82], variational principles

provide a systematic approach to derive consistent equations of motion when they are subject

to nontrivial boundary conditions or couples to other electromechanical systems. In our
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problem the piezoelectric systems are attached to shunt circuits with resistors and capacitors.

The variational principles for the piezoelectric system involve a modified form of classical

Hamilton’s principle [81, 82, 84, 85, 86, 87, 88, 89, 90, 91]. The classical form of Hamilton’s

principle [82, 92] states that any trajectory in the mechanical configuration space must satisfy

the variational identity

δ

∫ t1

t0

(T − V)dt+
∫ t1

t0

δWncdt = 0, (2.33)

where T is the kinetic energy of the system, V is the potential energy of the system and δWnc

is the virtual work done by the nonconservative mechanical forces acting on the system. The

variational formulations for piezoelectric systems use a modified form of Equation 2.33 and

are expressed in terms of electric enthalpy density H or the internal energy density U . The

equivalence of the two variational principles is discussed using a simple example in [84].

A.1 H Variational Principle

According to theH variational principle, the actual motion of a piezoelectric system attached

to a shunt circuit with a resistor, capacitor and current source in parallel must satisfy the

variational identity

δ

∫ t1

t0

(T − VH)dt+

∫ t1

t0

δWH,ncdt = 0 (2.34)

for all admissible variations of the actual electromechanical trajectory. In Equation 2.34,

T is the kinetic energy and VH is the electromechanical potential. It includes the potential

energy of linearly elastic components and the contribution of the electrical enthalpy. The

term δWnc is the nonconservative virtual work done by the electromechanical loads on the
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system. The contribution of electric enthalpy to the electromechanical potential is expressed

in the form

VH :=

∫
Ω
HdΩ − 1

2

∑
i

CiV 2
i . (2.35)

In Equation 2.35, H is the electric enthalpy density of the piezoelectric continua Ω, Ci is

the capacitance of the ith capacitor in the shunt circuit, and Vi is the voltage across the ith

shunt circuit. The virtual work done by the nonconservative terms in a piezoelectric system

attached to a shunt circuit has the form

δWH,nc = δWnc +
∑
j

ijδλj −
∑
k

λ̇k
Rk

δλk, (2.36)

where δWnc is the virtual work term shown in Equation 2.33 and λk is the flux linkage across

the shunt circuit. The terms
∑

j ijδλj and −
∑

k
λ̇k

Rk
δλk represent the virtual work contri-

butions from the current source with current output ik and the resistor with resistance Rk,

respectively. The equations of motion obtained using this variational principle are expressed

in terms of displacements and voltage/flux linkage as the generalized coordinates.

A.2 U Variational Principle

The second variational principle used in this chapter is the U variational principle. It is

expressed in terms of internal energy density of the system. According to this principle, the

actual motion of a electromechanical system must satisfy the variational statement

δ

∫ t1

t0

(T − VU)dt+

∫ t1

t0

δWU ,ncdt = 0 (2.37)
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for all admissible variations of the actual electromechanical trajectory. In Equation 2.37, T

is the kinetic energy, VU is the electromechanical potential defined in terms of the internal

energy density and δWU ,nc is the nonconservative work done by the system. The expression

for VU has the form

VU :=

∫
Ω
UdΩ +

1

2

∑
i

1

Ci
Q2

i , (2.38)

where U is the internal energy density of the piezoelectric continua Ω, Ci is the capacitance of

the ith capacitor in the shunt circuit, and Qi is the charge flowing through the shunt circuit.

The virtual work done δWU ,nc is expressed in the form

δWU ,nc = δWnc +
∑
j

VjδQj −
∑
k

RkQ̇kδQk, (2.39)

where δWnc is the virtual work done shown in Equation 2.33 and Qk is the charge flowing

through the shunt circuit. The terms
∑

j VjδQj and −
∑

k RkQ̇kδQk represent the virtual

work contributions from the voltage source Vk and the resistor of resistance Rk respectively.

The equations of motion derived using this variational principle are expressed in terms of

the displacements and charge as the generalized coordinates.

B Kinetic Energy of a PSOA

The kinetic energy of a PSOA attached to a host structure is given in Equation 2.4. Using

separation of variables and Galerkin approximation, an approximation of the transverse dis-

placement of each appendage is constructed as wi(x, t) =
∑n

j=1Ψij(x)Wij(t) = ΨT
i (x)Wi(t).

Substitution of the approximation into the expression for kinetic energy of the distributed
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mass of each appendage results in

Ti :=
1

2

∫ Li

0
ρiAi

(
(ẋp − ż) + Ẇ T

i Ψi

)(
(ẋp − ż) +ΨT

i Ẇi

)
dxi,

=
1

2

(∫ Li

0
ρiAidxi︸ ︷︷ ︸
Mi

(ẋp − ż)2 + 2

∫ Li

0
ρiAiΨ

T
i dxi︸ ︷︷ ︸

MT
ip

Ẇi (ẋp − ż) + Ẇ T
i

∫ Li

0
ρiAiΨiΨ

T
i dxi︸ ︷︷ ︸

Mii

Ẇi

)
,

=
1

2

(
Mi (ẋp − ż)2 + 2MT

ipẆi (ẋp − ż) + Ẇ T
i MiiẆi

)
. (2.40)

Similarly, substitution of the approximation of the transverse displacement into the expres-

sion for kinetic energy of the tip mass of each appendage results in

Ti =
1

2
mi

(
(ẋp − ż) + Ẇ T

i Ψi(Li)

)(
(ẋp − ż) +ΨT

i (Li)Ẇi

)
,

=
1

2

(
mi (ẋp − ż)2 + 2miΨ

T
i (Li)︸ ︷︷ ︸

mT
ip

Ẇi (ẋp − ż) + Ẇ T
i miΨi(Li)Ψ

T
i (Li)︸ ︷︷ ︸

mii

Ẇi

)
,

=
1

2

(
mi (ẋp − ż)2 + 2mT

ipẆi (ẋp − ż) + Ẇ T
i miiWi

)
. (2.41)

Thus, the total kinetic energy of the system is expressed as

T =
1

2
mp (ẋp − ż)2 +

N∑
i=1

1

2

(
(Mi +mi︸ ︷︷ ︸

Mi

) (ẋp − ż)2 + 2(Mip +mip︸ ︷︷ ︸
M ip

)TẆ T
i (ẋp − ż)

+ Ẇ T (Mii +mii︸ ︷︷ ︸
M ii

)Ẇ

)
,

=
1

2
mp (ẋp − ż)2 +

N∑
i=1

1

2

(
Mi (ẋp − ż)2 + 2MT

ipẆi (ẋp − ż) + Ẇ TM iiẆi

)
,

=
1

2
Mpp (ẋp − ż)2 +

N∑
i=1

1

2

(
2MT

ipẆi (ẋp − ż) + Ẇ TM iiẆi

)
, (2.42)

where Mpp := mp +
∑N

i=1Mi.
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C Electromechanical Potential of a PSOA

The total electromechanical potential of the system shown in Figure 2.4 can be calculated

using Equation 2.35. However, as evident from the electric enthalpy density expression given

in Equation 2.6, the electric field Ei has to be calculated before proceeding further. The

curl of the electric field across the bimorph beam is approximated as zero in the electro-

static approximation in linear piezoelectricity. Hence, electric field is expressed in the form

Ei(xi, yi, zi) := − δϕi

δzi
, where φi is the electric potential function. From the assumption of

linear variation of potential across the piezoelectric patch, it follows that

Ei =


Vi

tp,i
(xi, yi, zi) ∈ bottom patch,

− Vi

tp,i
(xi, yi, zi) ∈ top patch,

0 otherwise.

(2.43)

In Equation 2.43, Vi and tp,i are the voltage across and thickness of the piezoelectric patch of

the ith oscillator in the PSOA. The electromechanical potential can now be expressed using

Equation 2.35. It has the form

VHi =
1

2

∫ Li

0

(∫ ∫
CE

i z
2
i dyidzi

)(
∂2wi

∂x2i

)2

dxi +

∫ Li

0

(∫ ∫
eiziEidyidzi

)
∂2wi

∂x2i
dxi

− 1

2

∫ Li

0

(∫ ∫
εSi E

2
i dyidzi

)
dxi −

1

2
CiV 2

i . (2.44)

Assuming the material stiffness to be uniform in the y and z direction, the term
∫ ∫

CE
i z

2
i dyidzi

simplifies to CE
i Ii where Ii is the area moment of inertia of piezoelectric beam i. Defining

the terms κi := κTi − κBi with κTi :=
∫ ∫

AT
zidyidzi for the top piezoelectric patch and

κBi
:=
∫ ∫

AB
zidyidzi for the bottom piezoelectric patch simplifies the expression for the
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electromechanical potential to

VHi =
1

2

∫ Li

0

CE
i Ii

(
∂2wi

∂x2i

)2

dxi −
∫ Li

0

eiκi
tp,i

χ[ai,bi]
∂2wi

∂x2i
dxiVi(t)

− 1

2

εSi 2Ap,i(bi − ai)

t2p,i
V 2
i − 1

2
CiV 2

i . (2.45)

As shown in Figure 2.5, ai and bi in the above equation are the left and right piezoelectric

patch coordinates, respectively. The piezoelectric cross sectional area is defined as Ap,i :=

tp,i ·Wi, where tp,i and Wi are the thickness and width of the piezoelectric patch, respectively.

The function χ[ai,bi] in the Equation 2.45 is called the characteristic function and is defined

as

χ[ai,bi](x) :=

 1, if x ∈ [ai, bi],

0, otherwise.
(2.46)

Substituting the Galerkin approximation for transverse displacement of each substructure

wi =
∑n

i=1Ψi(x)Wi(t) = Ψi(x)Wi(t) into the above expression generates the expression

VHi =
1

2
W T

i KiiWi −BT
i WiVi −

1

2
DiV

2
i − 1

2
CiV 2

i , (2.47)

where

Kii :=

∫ Li

0

CE
i IiΨ

′′
iΨ

′′,T
i dxi, BT

i :=

∫ Li

0

κiei
tp,i

χ[ai,bi]Ψ
′′,T
i dxi, Di :=

εSi 2Ap,i(bi − ai)

t2p,i
.

(2.48)
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D Host Structure with a PSOA Model

In this section, the steps involved in deriving the equation of motion of a PSOA attached to

a host structure are given. Further simplification of the above expressions in Equations 2.4,

2.7 and 2.9 is achieved by introducing the block vectors and matrices

W :=

{
W1 . . . WN

}T

, V :=

{
V1 . . . VN

}T

, i :=

{
i1 . . . iN

}T

,

Λ :=

{
λ1 . . . λN

}T

, Mp :=

{
M1p . . . MNp

}T

, (2.49)

M := diag(M11,M22, . . . ,MNN), B := diag(B1,B2, . . . ,BN),

K := diag(K11,K22, . . . ,KNN), D := diag(D1, D2, . . . , DN), (2.50)

ζ := diag

(
1

R1

,
1

R2

, ...,
1

RN

)
C := diag (C1, C2, ..., CN) ·

The final equation for kinetic energy, electromechanical potential energy and virtual work

done then has the form

T =
1

2
(Mpp (ẋp − ż)2 + 2 (ẋp − ż)MT

p Ẇ + ẆTMW), (2.51)

VH =
1

2
(Kpx

2
p + WTKW − 2VTBTW − VTDV − VTCV), (2.52)

δWnc = Fpδ (xp − z) + iT δΛ − Λ̇TζδΛ − δqTCq̇,

= Fpδ (xp − z) + iT δΛ − Λ̇TζδΛ − δxpCpẋp − δWTCẆ. (2.53)
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The H variational principle can now be applied to derive the equations of motion of host

structure attached to the PSOA. Recall that the equations of motion must satisfy the H

variational principle we discussed in Subsection A.1. After substituting T , VH and δWnc into

Equation 2.34, the variational statement yields

∫ t1

t0

{
Mpp (ẋp − ż) δ (ẋp − ż) + MT

p Ẇδ (ẋp − ż) + (ẋp − ż)MT
p δẆ + δẆTMẆ

}
dt

−
∫ t1

t0

{
δWTKW − δVTBTW − δWTBV − δVTDV − δVTCV +Kpxpδxp

}
dt

+

∫ t1

t0

{
Fpδ (xp − z)− Λ̇TζδΛ − δWTCẆ − δxpCpẋp + iT δΛ

}
dt = 0. (2.54)

The base motion z is a prescribed input for this system. Hence, we have δ(xp − z) =

δxp. Rearranging the terms in the above expression and integration by parts results in the

variational expression

∫ t1

t0

{
δxp

(
−Mpp (ẍp − z̈)− MpẄ − Cpẋp −Kpxp + Fp

)
+ δWT

(
−Mp (ẍp − z̈)− MẄ − CẆ − KW + BV

)
+ δΛT

(
−BT Ẇ − DV̇ − ζΛ̇ + i − CV̇

)}
dt

+ variational BCs = 0, (2.55)

which must hold for all admissible variations δxp, δW and δΛ. It is shown in [82] that the

variational boundary conditions above are zero. Finally, the equations of motion of the

system under consideration are

 M Mp

MT
p Mpp


 Ẅ

ẍp − z̈

+

 C 0

0T Cp


 Ẇ

ẋp

+

 K 0

0T Kp


 W

xp

−

 B

0

V =

 0

Fp2

 ,

(2.56)
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or  M Mp

MT
p Mpp


 Ẅ

ẍp

+

 C 0

0T Cp


 Ẇ

ẋp

+

 K 0

0T Kp


 W

xp

−

 B

0

V =

 F̂p1

F̂p2

 ,

(2.57)

where F̂p1 = Mpz̈, F̂p2 = Fp +Mppz̈ and

BT Ẇ + DV̇ + ζΛ̇ − i + CV̇ = 0· (2.58)

E Closed Form Expression for Frequency Response Func-

tion

The current section is focused on deriving the frequency response function from the force

input Fp to the displacement xp of the primary structure. The transfer function from the

force input to the displacement of a host structure attached to a PSOA with capacitive shunt

is given by Equation 2.15. Evaluating this transfer function along the imaginary axis can

find the required FRF. However, we seek a FRF that is similar in form to the expression in

Equation 2.1 [11]. To achieve this, we introduce a change of variables

 W

xp

 =

 I −α

0T 1


︸ ︷︷ ︸

Γ

 Xs

xp

 (2.59)

in Equation 2.15 and premultiply the same equation by ΓT . This change in variables re-

moves the mass coupling in the transfer function. In Equation 2.59, α := M−1Mp, and Xs

is analogous to the absolute displacement of the piezoelectric beam. After the change in
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variables in Equation 2.15, we have

 Ms2 + Cs+ K̂ −(Cs+ K̂)α

−((Cs+ K̂)α)T M̄pps
2 + C̄ps+ K̄p


 Xs

xp

 =

 0

fp(s)

 , (2.60)

where the terms M̄pp, C̄p, K̄p have the definitions M̄pp := (Mpp−αTMp), C̄p := (Cp+αTCα),

K̄p := (Kp +αT K̂α). From Equation 2.60, we have the relations

Xs = (Ms2 + Cs+ K̂)−1(Cs+ K̂)αxp, (2.61)

− ((Cs+ K̂)α)TXs + [M̄pps
2 + C̄ps+ K̄p]xp = fp(s). (2.62)

Equation 2.61 represents the relation between the motion of the primary mass and motion

of the substructures. The transfer function from the applied force to the displacement of the

primary structure is obtained by substituting Equation 2.61 into Equation 2.62. As is well

known, using modal or Fourier shape functions yields matrices and sub-matrices M, K, C, B

and D that are diagonal. As defined in the earlier sections, the elements of M, Mp, K, C and

B are Mnn, Mnp, Knn, Cnn and Bn, respectively. With single mode approximation these

elements reduce to scalars which are denoted by Mnn, Mnp, Knn, Cnn and Bn, respectively.

With these assumptions, it is easier to derive the transfer function which is given by

xp(s)

fp(s)
=

{
Mpps

2 + Cps+Kp

+
N∑

n=1

[
− αnMnps

2 + α2
nCnns+ α2

nK̂nn −
(Cnnαns+ K̂nnαn)

2

Mnns2 + Cnns+ K̂nn

]}−1

. (2.63)

The transfer function in the case of multi-mode approximation will look very similar to

Equation 2.63 and can be derived using the same procedure shown above. Substituting
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s = iω into Equation 2.63 results in an expression for the frequency response function

xp(iω)

fp(iω)
=

{
−Mppω

2 + iCpω +Kp

+
N∑

n=1

[
αnMnpω

2 + α2
n

[
iCnnω + K̂nn −

(iCnnω + K̂nn)
2

−Mnnω2 + iCnnω + K̂nn

]]}−1

. (2.64)
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Chapter 3

RKHS Embedding for Estimation of

Nonlinearities in Piezoelectrics

Abstract
Nonlinearities in piezoelectric systems can arise from internal factors such as nonlinear con-

stitutive laws or external factors like realizations of boundary conditions. It can be difficult or

even impossible to derive detailed models from the first principles of all the sources of nonlin-

earity in a system. This chapter introduces adaptive estimator techniques to approximate the

nonlinearities that can arise in certain classes of piezoelectric systems. Here an underlying

structural assumption is that the nonlinearities can be modeled as continuous functions in

a reproducing kernel Hilbert space (RKHS). This approach can be viewed as a data-driven

method to approximate the unknown nonlinear system. This chapter introduces the theory

behind the adaptive estimator, discusses precise conditions that guarantee convergence of the

function estimates, and studies the effectiveness of this approach numerically for a class of

nonlinear piezoelectric composite beams.

3.1 Introduction

Researchers have studied piezoelectric systems extensively over the past three decades for

applications to classical problems like vibration attenuation, which is described in general
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3.1. Introduction 79

treatises like [1, 2, 3, 4], as well as modern problems like energy harvesting [5, 6]. Even

though many of these studies model piezoelectric oscillators as linear systems, piezoelectric

systems are often inherently nonlinear. At low input amplitudes, the effect of nonlinearity is

ordinarily not very pronounced. However, linear models can fail to capture the dynamics of

piezoelectric systems that undergo large displacements, velocities, accelerations, or electric

field strengths. Researchers have consequently also developed nonlinear models for many

examples of piezoelectric oscillators. A general account of nonlinear field theory as it arises

in modeling piezoelectric continua can be found in [7, 8, 9], while reference [10] gives a good

account of how active nonlinear piezostructural components are incorporated in typical plate

or shell models.

Some of the models that are perhaps the most relevant to the system considered in this

chapter are [11, 12, 13, 14, 15, 16, 17, 18, 19]. In these studies, researchers investigate case-

specific models that include higher-order polynomial terms in the constitutive laws. The

models in the above publications by [11, 12, 13, 14, 15, 16, 17, 18, 19] are representative

of methods that include higher-order (polynomial) terms in the electric enthalpy density to

construct nonlinear piezoelectric system models. Using the extended Hamilton’s principle,

Lagrange’s equations, or Lagrange density methods then gives a corresponding set of nonlin-

ear equations of motion. We can think of all of these methods, in general, as approximations

of the constitutive laws in terms of power series expansions of the nonlinear term. These

methods are powerful tools and have been successfully implemented to model nonlinearities

in piezoelectric devices, as illustrated in the articles cited above. Such methods for studying

nonlinear systems that make explicit use of power series approximations and polynomial

classes of nonlinearities have a long history. A general discussion of the theory underlying

these approaches for nonlinear systems can be found in well-known texts such as those by

[20, 21] for nonlinear systems theory, or [22] on perturbation methods. Much of the anal-
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ysis carried out in using these methods relies expressly on knowing the exact form of the

governing nonlinearity. When such knowledge is available, strong conclusions regarding the

stability, the nature of bifurcations, the possibility of internal or parametric resonance, or

even chaotic response of the system can often be made.

Nonlinearities in piezoelectric systems are not just limited to polynomials nonlinearities

discussed above. There is a rich collection of literature that study history dependent modeling

in piezoelectric systems and can be broadly classified into (1) rate-dependent and (2) rate-

independent methods. General accounts of the theory on history dependent models can

be found in [23, 24]. The former class of modeling approaches focuses on the relationship

between the input control and output displacement. Examples of these methods include

the Preisach model ([25, 26, 27]), Prandtl-Ishlinskii model ([28, 29, 30, 31]), Krasnoselskii-

Pokrovskii model ([32, 33, 34]), and Maxwell model ([35, 36]). In the latter category of

history dependent models for piezoelectric systems, rate-dependent methods include the

Bouc-Wen Hysteresis model ([37, 38, 39]), Dahl model ([40, 41]), Duhem model ([42, 43]).

A review of all these methods can be found in [44]. Overall, it should be noted that the

nature of history dependent models in the above references varies substantially, much more so

than the models that feature polynomial nonlinearities that appear in an ordinary differential

equation. The equations governing history dependence in piezoelectrics may be cast in terms

of functional differential equations, differential inclusions, or in terms of history dependent

operators depending on the reference.

The above methods are highly effective for modeling piezoelectric system behavior when we

know the form of the underlying nonlinearities. However, it is not always easy to deter-

mine this knowledge with a high level of certainty. Even for the narrow class of polynomial

nonlinearities in the electric enthalpy, the choice of which polynomial terms to include for

a particular material at hand can be subtle. If the form of the polynomial nonlinearity is
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known, then the classical methods of attack such as in [20, 21, 22] can and should be ap-

plied: these approaches provide a framework for very strong conclusions. When a system at

hand is poorly understood, or even unknown, data-driven identification methods have been

developed to address such cases. To be sure, these techniques primarily focus on different

types of conclusions than the methods that rely on precise knowledge of the form of the un-

certainty. Data-driven estimation methods focus on conditions that ensure the convergence

of a function estimate to the true unknown function, rate of convergence of the estimation

error, and the study of types of uncertainties that can be estimated. Data-driven methods

for linear systems are well-known, well-documented, and are described in classical texts like

[45]. Some of these methods have been encoded in commercially available packages such

as, for example, the LMS PolyMAX software. Data-driven modeling approaches developed

explicitly for nonlinear systems are an area of increasing interest and as of yet to be fully

developed. Researchers have used system identifications methods to estimate the parameters

in the above class of conventional nonlinear modeling approaches discussed above [46, 47, 48].

On the other hand, data-driven approaches have also been used as standalone methods to

model nonlinear system behavior. One example of such a technique is the Dynamic Mode

Decomposition (DMD) method, which approximates Koopman modes to model the inherent

dynamics [49, 50, 51, 52, 53, 54]. Another example would be the use of machine learning

methods to identify the underlying nonlinearities in piezoelectric systems [55, 56, 57, 58, 59].

In this chapter, we introduce a novel data-driven approach for estimating nonlinearities in

piezoelectric systems. This approach is based on embedding the unknown nonlinear func-

tion appearing in the governing equation in a reproducing kernel Hilbert space (RKHS).

The unknown function is subsequently estimated through adaptive parameter estimation.

Identification methods that use RKHS have been studied for problems like terrain mea-

surement [60], control of dynamical systems [61, 62, 63], sensor selection [64], and learning
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spatiotemporally-evolving systems [65, 66]. In this chapter, we extend the methodology ini-

tially developed in [60] to nonlinear piezoelectric systems, which are a type of nonautonomous

system. The advantages are as follows:

1. Under some conditions, this technique provides a bound on the error between the

actual and estimated unknown function.

2. There is a geometric interpretation of the error estimate, in terms of the positive

limit set of the system equations, that describes the subset over which convergence is

guaranteed. This is a newly observed property of the RKHS embedding method.

3. This technique not only gives us a nonlinear model but also estimates the underlying

nonlinear function over a subspace of the state space.

4. Since the primary assumption is that the nonlinear function belongs to an RKHS, this

technique can be implemented for a large class of nonlinearities.

5. Unlike conventional modeling techniques, the explicit structure of the uncertainty in

the nonlinearity does not influence the estimation approach. If some portion of the

nonlinearity is known, this knowledge can be used and only the unknown part of the

nonlinearity needs to be estimated.

In this study, we take as a prototypical example of a piezoelectric system, a piezoelectric

composite beam subject to base excitation, and we model its dynamics using an adaptive

estimation technique based on the RKHS embedding method.
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3.2 Nonlinear Piezoelectric Model

In this section, we derive the equations of motion of a piezoelectric bimorph beam shown in

Figure 3.1. We assume that the beam is excited at its base by input z and the shunt circuit

is open. The method given here represents the classical approach for deriving the governing

equations for the target class of nonlinear piezoelectric composites. This section carefully

describes the precise nature of some constitutive nonlinearities and reveals the limitations

of the traditional linear models. In the current study, we have chosen the electric enthalpy

density for nonlinear continua given in [11] to serve as the means to construct the governing

equations and formulate the RKHS embedding approach. Note that the RKHS embedding

techniques discussed in this chapter are not limited to this problem and can be adapted to

model other types of similar nonlinear electromechanical composite oscillators.

3.2.1 Nonlinear Electric Enthalpy Density

The expression for electric enthalpy density for modeling linear piezoelectric continua is given

by

H =
1

2
CE

ijklSijSkl − emijSijEm − 1

2
εSimEiEm,

where CE
ijkl, Sij, emij, Em, and εSim are the Young’s modulus, strain, piezoelectric coupling,

electric field, and permittivity tensors, respectively. The quadratic form above is written

using the summation convention. Based on thermodynamic considerations, the stress and

electric displacement, Tij and Di, respectively, are defined in the relations

Tij =
∂H
∂Sij

∣∣∣∣
s,E

, −Di =
∂H
∂Ei

∣∣∣∣
s,S

.
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The associated constitutive laws of linear piezoelectricity have the form

Tij

Dm

 =

CE
ijkl −enij

emkl εSmn


Skl

En

 ,

where again the summation convention holds in the expression above. In the above equa-

tions, the superscripts on CE
ijkl and εSmn emphasize that these constants are measured when

the electric field and strain are held constant. For piezoelectric beam bending models, con-

sideration is restricted to constitutive laws that have the formTxDz

 =

CE
xx −ezx

ezx εSzz


Sx

Ez

 ,

where x ∼ 11, z ∼ 3 are the coordinate directions depicted in Figure 3.1. The coordinate x

is measured along the neutral axis that extends along the length of the beams, and z is in

the transverse bending displacement direction. The permittivity at constant strain can be

related to that at constant stress using the relation

εSzz = εTzz − d2zxC
E
xx.

The piezoelectric strain coefficient dzx is related to the piezoelectric coupling constant ezx

by the equation ezx = CE
xxdzx. The constitutive laws for the piezoelectric composite are

Tx = CE
xxSx − dzxC

E
xxEz,

Dz = dzxC
E
xxSx + (εTzz − d2zxC

E
xx)Ez.

A detailed discussion of this linear case can be found in [3, 67, 68].
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For large values of the field variables, the effects of nonlinearity in the piezoelectric continua

can become dominant. We account for these effects by adding higher order terms in the

expression for the electric enthalpy density. The nonlinear dependence between CE
xx, dzx and

Sx can be approximated using the relations [11]

CE
xx = CE(0)

xx + CE(1)
xx Sx + CE(2)

xx S2
x,

dzx = d(0)zx + d(1)zx Sx + d(2)zx S
2
x.

The corresponding electric enthalpy density has the form

H =
1

2
CE(0)

xx S2
x +

1

3
CE(1)

xx S3
x +

1

4
CE(2)

xx S4
x − γ0SxE − 1

2
γ1S

2
xE − 1

2
ν0E

2 (3.1)

with

ν0 = εT − (d(0)zx )
2CE(0)

xx , γ0 = CE(0)
xx d(0)zx ,

γ1 = CE(0)
xx d(1)zx + CE(1)

xx d(0)zx , γ2 = CE(0)
xx d(2)zx + CE(2)

xx d(0)zx + CE(1)
xx d(1)zx .

Thus, the nonlinear constitutive laws, obtained using the relations shown above, have the

form

Tx = CE(0)
xx Sx + CE(1)

xx S2
x + CE(2)

xx S3
x − γ0Ez − γ1SxEz − γ2S

2
xEz,

Dz = γ0Sx +
1

2
γ1S

2
x +

1

3
γ2S

3
x + ν0Ez.

See references [15, 16, 69, 70, 71] for other similar models that are used to represent the

behavior of nonlinear piezoelectric systems.
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3.2.2 Equations of Motion

Figure 3.1: Dimensions of the cantilevered piezoelectric bimorph.

In this subsection, we derive the nonlinear equations of motion of the typical piezoelectric

composite, the cantilevered bimorph, shown in Figure 3.1. The extended Hamilton’s Prin-

ciple states that of all the possible trajectories in the electromechanical configuration space,

the actual motion satisfies the variational identity

δ

∫ t1

t0

(T − VH) dt+

∫ t1

t0

δWdt = 0 (3.2)

with kinetic energy T , electromechanical potential VH defined below, electromechanical vir-

tual work δW , initial time t0, and final time t1. The kinetic energy of the nonlinear piezo-

electric beam is expressed as

T =
1

2

∫ l

0

m(x)(ẇ + ż)2dx =
1

2
m
∫ l

0

(ẇ + ż)2dx (3.3)

with m(x) the mass per unit length of the beam and m defined as m = ρshs + 2ρphp. In the

above equation, w = w(x, t) is the displacement from the neutral axis at location x ∈ [0, l]

at time t. The variable z(t) represents the displacement of the root of the beam, that is, it is

the base motion that occurs in the z direction defined relative to the beam. The terms ρ and

h represent the density and thickness, respectively. The subscript s represents the variables
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corresponding to the substrate and the subscript p indicates those of the piezoceramic. The

electric enthalpy for the nonlinear system is given by the relation

VH =

∫
V

HdV =

∫
Vb

HdVb +
∫
Vp

HdVp.

Substituting the expression for H in the above equation gives

VH =

∫
Vb

1

2
CbS

2
xdVb +

∫
Vc

(
1

2
C(0)

xx S
2
x +

1

3
C(1)

xx S
3
x +

1

4
C(2)

xx S
4
x − γ0SxEz

− 1

2
γ1S

2
xEz −

1

3
γ2S

3
xEz −

1

2
ν0E

2
z

)
dVp (3.4)

with beam Young’s modulus Cb, beam volume Vb and piezoelectric patch volume Vp. We

recall that the approximation for bending strain in Euler-Bernoulli beam theory is given by

Sx(x, z, t) = −∂
2w(x, t)

∂x2
z,

∀x ∈ [0, l], ∀z ∈
[
−hb

2
− hc,

hb

2
+ hc

]
. Consider the term

∫
Vp

1
2
C

(0)
xx S2

x in the expression

for electric enthalpy density. With the substitution of the expression for strain, we get

∫
Vp

1

2
C(0)

xx S
2
x =

1

2
C(0)

xx

∫
Vp

[(w′′)2z2]dV =
1

2
C(0)

xx

(∫ b

a

(w′′)2dx

)(∫ b

0

dy

)(
2

∫ hb
2
+hc

hb
2

z2dz

)

= 2

[
1

6
C(0)

xx b

{(
hb
2

+ hc

)3

−
(
hb
2

)3
}]

︸ ︷︷ ︸
a(0,2)

∫ b

a

(w′′)2dx = 2a(0,2)

∫ b

a

(w′′)2dx.

The other terms in Equation 3.4 can be simplified in a similar manner. The expression for

electric enthalpy density after simplification has the form

VH =
1

2
CbIb

∫ l

0

(w′′)2dx+ 2a(0,2)

∫ b

a

(w′′)2dx+ 2a(2,4)

∫ b

a

(w′′)4dx
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+ 2b(1,1)

(∫ b

a

w′′dx

)
Ez + 2b(3,1)

(∫ b

a

(w′′)3dx

)
Ez − 2b(0,2)E

2
z , (3.5)

where we define

a(0,2) :=
1

6
C(0)

xx b

[(
hb
2

+ hc

)3

−
(
hb
2

)3
]
, a(2,4) :=

1

20
C(2)

xx b

[(
hb
2

+ hc

)5

−
(
hb
2

)5
]
,

b(1,1) :=
1

2
γ0b

[(
hb
2

+ hc

)2

−
(
hb
2

)2
]
, b(3,1) :=

1

12
γ2b

[(
hb
2

+ hc

)4

−
(
hb
2

)4
]
,

b(0,2) :=
1

2
ν0bhclc.

For the time being, we omit the effects of damping in the following derivation. Following

the details included in Appendix F, the variational statement of Hamilton’s principle yields

the pair of equations

mẅ + CbIbw
′′′′ + 4a(0,2)

(
χ[a,b]w

′′)′′ + 8a(2,4)(χ[a,b](w
′′)3)′′ + 2b(1,1)χ

′′
[a,b]Ez

+ 6b(3,1)(χ[a,b](w
′′)2)′′Ez = −mz̈, (3.6)

2b(1,1)w
′(b)− 2b(1,1)w

′(a) + 2b(3,1)

(∫ b

a

(w′′)3dx

)
+ 4b(0,2)Ez = 0, (3.7)

where χ[a,b] is the characteristic function of the interval [a, b] defined as in Equation 3.23.

These equations are subject to the corresponding variational boundary conditions
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{
CbIbw

′′ + 4a(0,2)χ[a,b]w
′′ + 8a(2,4)χ[a,b](w

′′)3 + 2b(1,1)χ[a,b]Ez + 6b(3,1)χ[a,b](w
′′)2
}
δw′∣∣l

0
= 0,{

CbIbw
′′′ + 4a(0,2)

(
χ[a,b]w

′′)′ + 8a(2,4)
(
χ[a,b](w

′′)3
)′
+ 2b(1,1)χ

′
[a,b]Ez + 6b(3,1)

(
χ[a,b](w

′′)2
)′ }

δw

∣∣∣∣l
0

= 0,

and to the initial conditions w(0) = w0 and ẇ(0) = ẇ0.

We know that the effects of nonlinearity in oscillators become most noticeable near the

natural frequency. Hence, we approximate the solutions of Equations 3.6 and 3.7 using a

single-mode approximation w(x, t) = ψ(x)u(t). Following the detailed analysis in Appendix

G, the equations of motion are written

Mü(t) + P z̈(t) + [Kb +Kp]︸ ︷︷ ︸
K

u(t) +KNu
3(t) + [B +QNu

2(t)]Ez = 0, (3.8)

Bu(t) + BNu
3(t) = CEz (3.9)

for constants M,P,Kb, Kp, KN ,B, QN ,BN , and C defined in Appendix G.

Note that the first equation defines the dynamics of the system and the second equation

defines an algebraic relation between displacement and the electric field. From the second

equation of motion, we get an expression for the electric field that has the form Ez =

[Bu(t) + BNu
3(t)]/C. Substituting this expression for electric field into the first equation of

motion, we get

−P z̈(t) =Mü(t) +

[
K +

B2

C

]
︸ ︷︷ ︸

K̂

u(t) +

[
KN +

BBN

C
+
QNB
C

]
︸ ︷︷ ︸

K̂N1

u3(t) +
QNBN

C︸ ︷︷ ︸
K̂N2

u5(t),

−P z̈(t) =Mü(t) + K̂u(t) + K̂N1u
3(t) + K̂N2u

5(t).
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After introducing a viscous damping term for the representation of energy losses, we have

Mü(t) + Cu̇(t) + K̂u(t) + K̂N1u
3(t) + K̂N2u

5(t) = −P z̈(t).

Let us define the state vector x = {x1, x2}T = {u, u̇}T . Now, we can write the first order

form of the governing equations as

ẋ1ẋ2
 =

 0 1

− K̂
M

− C
M


︸ ︷︷ ︸

A

x1x2
+

 0

− P
M

︸ ︷︷ ︸
B

z̈(t)︸︷︷︸
u(t)

+

0

1

︸ ︷︷ ︸
BN

(
−K̂N1

M
x31(t)−

K̂N2

M
x51(t)

)
︸ ︷︷ ︸

f(x(t))

, (3.10)

or

ẋ(t) = Ax(t) +Bu(t) +BNf(x(t)).

We make several observations before proceeding to the adaptive estimation problem treated

in the next section. Note that the specific form of function f(x) = f(x1) that is given in

Equation 10 above has been constructed assuming the only unknown terms are the nonlin-

earities arising from the constitutive laws. We allow for a wider class of uncertainty that

can be expressed as f(x) = f(x1, x2). For instance, if the viscous damping coefficient is

uncertain or unknown, the damping term should be subsumed into f(x1, x2). With these

considerations in mind, the derivations in the next section are carried out for the more gen-

eral case when f = f(x1, x2). However, when we prepare finite-dimensional approximations

in Section 3.3.2 for the simulations in Sections 3.4 and 3.5, we specialize examples to the

case f = f(x1) described above.
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3.3 Adaptive Estimation in RKHS

In this section, we pose the estimation problem for the approximation of the unknown

nonlinear function f and review the theory of RKHS adaptive estimation. The governing

equation of the plant, the piezoelectric oscillator modeled in Section 3.2, has the general

form

ẋ(t) = Ax(t) +Bu(t) +BNf(x(t)). (3.11)

We denote the state space of this evolution law by X = Rd, so that x(t) ∈ X. Under the

assumption of full state observability, the problem of estimation of the states x(t) at a given

time instant t is a classical state estimation problem. However, the problem of interest in

this chapter is the estimation of the unknown function f . Problems of this type generally

involve the definition of an estimator system that evolves in parallel with the actual plant.

The model of the estimator for the plant defined by Equation 3.11 is taken in the form

˙̂x(t) = Ax̂(t) +Bu(t) +BN f̂(t,x(t)). (3.12)

In Equation 3.12, note that the estimate f̂ of the function f depends not only on the actual

(measured) states x(t) but also the time t. We want the function estimate f̂(t, ·) to converge

in time to the actual function f(·) in some suitable function space norm as t→ ∞.

In addition to the estimator model, it is also important to define the hypothesis space, the

space of functions in which the function f and the function estimate f̂ live. In this chapter,

we assume that the unknown nonlinear function f lives in the infinite dimensional RKHS HX

equipped with the reproducing kernel KX : X×X → R. Recall that the reproducing property

of the kernel states that, for any x ∈ X and f ∈ HX , (K(x, ·), f)HX
= f(x). It is well known
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that the existence of a reproducing kernel guarantees the boundedness of the evaluation

functional Ex : HX → R, which is defined by the condition that Exf = (K(x, ·), f)HX
. In

this chapter, we restrict to RKHS in which the reproducing kernel is bounded by a constant.

This implies that the injection i : HX → C(Ω) from the RKHSHX to the space of continuous

function on Ω, C(Ω), is uniformly bounded [60]. This fact is used to prove the existence and

uniqueness of the solution of the error system. A more detailed discussion about RKHS can

be found in [72, 73, 74].

In addition to the estimator model, we also need an equation that defines the evolution (time

derivative) of the function estimate. This is given by the learning law

˙̂
f(t) = Γ−1(BNEx(t))∗P (x(t)− x̂(t)), (3.13)

where Γ ∈ R+, Ex is the evaluation functional at x ∈ X, and the notation (·)∗ denotes the

adjoint of an operator. Further, the matrix P ∈ Rd×d is the symmetric positive definite

solution of the Lyapunov’s equation ATP + PA = −Q, where Q ∈ Rd×d is an arbitrary but

fixed symmetric positive definite matrix.

The existence and uniqueness of a solution for the estimator models given by Equations 3.12

and 3.13 can be proved under the assumption that the excitation input is continuous and we

are working in an uniformly embedded RKHS as mentioned above. The following theorem

proves this statement.

Theorem 3.1. Define X := Rd × HX , and suppose that x ∈ C([0, T ];Rd), u ∈ C([0, T ];R)

and that the embedding i : HX ↪→ C(Ω) is uniform in the sense that there is a constant

C > 0 such that for any f ∈ HX ,

‖f‖C(Ω) ≡ ‖if‖C(Ω) ≤ C‖f‖HX
.
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Then for any T > 0, there is a unique mild solution (x̂, f̂) ∈ C([0, T ],X) to


˙̂x(t)

˙̂
f(t)

 =

Ax̂(t) +Bu(t) +BNEx(t)f̂(t)

Γ−1(BNEx(t))∗P (x(t)− x̂(t))

 , (3.14)

and the map X̂0 ≡ (x̂0, f̂0) 7→ (x̂, f̂) is Lipschitz continuous from X to C([0, T ],X).

Proof. We set X(t) := (x̂(t), f̂(t)) ∈ X. Equation 3.14 given above can be rewritten as


˙̂x(t)

˙̂
f(t)

 =

A 0

0 A0


︸ ︷︷ ︸

A

x̂(t)

f̂(t)

+

 Bu(t) +BNEx(t)f̂(t)

−A0f̂(t) + Γ−1(BNEx(t))∗P (x(t)− x̂(t))

︸ ︷︷ ︸
F(t,X(t))

, (3.15)

x̂(t0)

f̂(t0)

 =

x̂0

f̂0

 ,

where −A0 is an arbitrary bounded linear operator from HX to HX . It is clear from the

above equation that A is a bounded linear operator. We know that every bounded linear

operator is the infinitesimal generator of a C0-semigroup on X := Rd × HX (Theorem 1.2,

Chapter 1 of [75]). Now, consider the function F . For each t ≥ 0, we have

‖F(t, X̂)−F(t, Ŷ )‖ =

∥∥∥∥∥∥∥
 BNEx(t)(f̂x̂(t)− f̂ŷ(t))

−A0(f̂x̂(t)− f̂ŷ(t)) + Γ−1(BNEx(t))∗P (ŷ(t)− x̂(t))


∥∥∥∥∥∥∥

≤ D‖X̂ − Ŷ ‖,

where X̂ := (x̂, f̂x̂), Ŷ := (ŷ, f̂ŷ), and D ≥ 0 is a constant. Note that we are able to achieve

the above bound because of uniform boundedness of the evaluation functional Ex(t). Thus,

for each t ≥ 0, the map X̂ 7→ F(t, X̂) is uniformly globally Lipschitz continuous. We also
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note that the map t 7→ F(t, X̂) is continuous for each X̂ ∈ X since u is continuous. Using

Theorem 1.2 in Chapter 6 of [75], we can conclude that the above initial value problem has

a unique mild solution, and the map X̂0 ≡ (x̂0, f̂0) 7→ (x̂, f̂) is Lipschitz continuous from X

to C([0, T ],X).

Suppose that x̃(t) := x(t)− x̂(t) and f̃(t, ·) := f(·)− f̂(t, ·) denote the state error and the

function error, respectively. Equations 3.11, 3.12 and 3.13 can now be expressed in terms of

the error equation

 ˙̃x(t)

˙̃
f(t)

 =

 A BNEx(t)

−Γ−1(BNEx(t))∗P 0

x̃(t)

f̃(t)

 . (3.16)

Note, the above equation evolves in Rd × HX . Also, even though the original Equation

3.11 and the estimator Equation 3.12 are not the same as in Reference [60], the above error

equation does have the same form as that studied in [60]. The existence and uniqueness of

a solution for this equation are given by the following theorem.

Theorem 3.2. Define X := Rd × HX , and suppose that x ∈ C([0, T ];Rd) and that the

embedding i : HX ↪→ C(Ω) is uniform in the sense that there is a constant C > 0 such that

for any f ∈ HX ,

‖f‖C(Ω) ≡ ‖if‖C(Ω) ≤ C‖f‖HX
.

Then for any T > 0, there is a unique mild solution (x̃, f̃) ∈ C([0, T ],X) to Equations 3.16

and the map X0 ≡ (x̃0, f̃0) 7→ (x̃, f̃) is Lipschitz continuous from X to C([0, T ],X).

The proof for this theorem is very similar to the proof of Theorem 3.1 and is given in [60].

Note that the above theorem does not study the stability nor the asymptotic stability of the
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error system. In other words, the convergence of the state error and the function error to the

origin is not addressed by this theorem. This aspect is addressed in the following subsection.

3.3.1 Persistence of Excitation

The convergence of state and function errors is guaranteed by additional conditions, com-

monly referred to as the persistence of excitation (PE) conditions [76, 77, 78]. These have

been extended to the RKHS framework in [79, 80]. This section reviews the persistence of

excitation conditions for adaptive estimators on RKHS in detail.

Before taking a look at the PE conditions for the adaptive estimator in the RKHS, it is

important to note that they are defined over a set Ω ⊆ X. Now, we can define HΩ :=

{K(x, ·)|x ∈ Ω}. Note that HΩ is a subspace of HX . The following definitions give us two

closely related versions of the PE condition on the set Ω.

Definition 3.3. (PE. 1) The trajectory x : t 7→ x(t) ∈ Rd persistently excites the indexing

set Ω and the RKHS HΩ provided there exist positive constants T0, γ, δ, and ∆, such that

for each t ≥ T0 and any g ∈ HX , there exists s ∈ [t, t+∆] such that

∣∣∣∣∫ s+δ

s

Ex(τ)gdτ
∣∣∣∣ ≥ γ‖ΠΩg‖HX

> 0.

Definition 3.4. (PE. 2) The trajectory x : t 7→ x(t) ∈ Rd persistently excites the indexing

set Ω and the RKHS HΩ provided there exist positive constants T0, γ, and ∆ such that

∫ t+∆

t

(
E∗
x(τ)Ex(τ)g, g

)
HX

dτ ≥ γ‖ΠΩg‖2HX
> 0

for all t ≥ T0 and any g ∈ HX .
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In the above definitions, the term ΠΩ represents the orthogonal projection operator from the

RKHS HX to its subspace HΩ. Notice that both the PE conditions are defined on the set Ω.

It would be ideal if Ω = X, the space on which the nonlinear function is defined. However,

in most practical applications, the set Ω is a subset of the state space X. The following

theorem relates both the PE conditions given above.

Theorem 3.5. The PE condition in Definition PE. 3.3 implies the one in Definition PE. 3.4.

Further, if the family of functions defined by {g(x(·)) : t 7→ g(x(t))|g ∈ HX} is uniformly

equicontinuous, then the PE condition in Definition PE. 3.4 implies the one in Definition

PE. 3.3.

With the PE conditions defined, the following theorem addresses the convergence of the

states of the error system to the origin.

Theorem 3.6. Suppose the trajectory x : t 7→ x(t) persistently excites the RKHS HΩ in the

sense of Definition PE. 3.3. Then the estimation error system in Equation 3.16 is uniformly

asymptotically stable at the origin. In particular, we have

lim
t→∞

‖x̃(t)‖ = 0, lim
t→∞

‖ΠΩf̃(t)‖HX
= 0.

The proof for this theorem can be found in [79, 80]. Intuitively, the second PE condition

implies that the state trajectory should repeatedly enter every neighborhood of all the points

in the set Ω infinitely many times. To satisfy this, it makes sense to pick the set Ω to be the

positive limit set ω+(x0) or one of its subsets. The following theorem from [81] affirms that

the persistently excited sets are in fact contained in the positive limit set.

Theorem 3.7. Let HX be the RKHS of functions over X and suppose that this RKHS
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includes a rich family of bump functions. If the PE condition in Definition PE. 3.4 holds

for Ω, then Ω ⊆ ω+(x0), the positive limit set corresponding to the initial condition x0.

3.3.2 Finite Dimensional Approximation

As mentioned above, the evolution of the error equation and the learning law for the RKHS

adaptive estimator is in R × HX . In essence, the learning law constitutes a distributed

parameter system since f̃(t) evolves in a infinite-dimensional space. Thus, to implement this

adaptive estimator, the persistently excited infinite-dimensional space HΩ is approximated

by a nested, dense collection {Hn}n∈N of finite-dimensional subspaces. Recall that even

though the particular nonlinear function f based on the choice of constitutive nonlinearities

in Equation 3.1 is a function f = f(x1), we have elected to cast the problem in terms of

the more general nonlinear function f = f(x1, x2). In this section, we will continue with

the analysis of finite-dimensional approximation for the more general unknown nonlinear

function f = f(x1, x2), which results in Equations 3.17 and 3.18 below. Modifications of

these equations to study the particular case in which f = f(x1) are straightforward, and

we summarize this specific case at the beginning of Section 3.5. We leave the details to

the reader. Let Πn represent the projection operator from infinite-dimensional HX to the

finite-dimensional Hn. Now, the finite-dimensional approximations of the adaptive estimator

equations can be expressed as

˙̂xn(t) = Ax̂n(t) +Bu(t) +BNEx(t)Π∗
nf̂n(t), (3.17)

˙̂
fn(t) = Γ−1

(
BNEx(t)Π∗

n

)∗
P x̃n(t), (3.18)

where x̃n := x− x̂n.

Theorem 3.8. Suppose that x ∈ C([0, T ],Rd) and that the embedding i : HX ↪→ C(Ω) is
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uniform in the sense that

‖f‖C(Ω) ≡ ‖if‖C(Ω) ≤ C‖f‖HX
.

Then for any T > 0,

‖x̂− x̂n‖C([0,T ];Rd) → 0,

‖f̂ − f̂n‖C([0,T ];Rd) → 0,

as n→ ∞.

The proof of the above theorem can be found in [60]. As noted earlier, the estimator equations

considered in [60] are different from the ones considered in this chapter. However, the error

equations for x̂ − x̂n and f̂ − f̂n still have the same form as in [60], and the proof of the

above theorem will remain the same.

3.4 RKHS Adaptive Estimator Implementation

The previous section discussed the theory behind estimators that evolve in an RKHS. This

section presents the algorithm for the implementation of the theory. Figure 3.2 shows the

block diagram of the adaptive estimator. The actual model shown in the figure corresponds

to the true system excited by the input u, and we assume that we can measure all the states

x(t) of this true system. The estimator and learning law blocks in the diagram are what we

implement on the computer. Let us first take a look at the estimator model. The operator Π∗
n

in the estimator model is the adjoint of the orthogonal projection/approximation operator

Πn. It is equivalent to the inclusion map that maps an element of Hn space to the same

element in the HX space. Thus, the term Ex(t)Π∗
nf̂n(t) in the estimator model is the same as
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Figure 3.2: Adaptive Parameter Estimator Block Diagram.

Ex(t)f̂n(t) = f̂n(t,x(t)).

Now, let us take a look at the learning law given in Equation 3.18. It is a derivative of

a function, and we cannot directly implement it on a computer. To convert it to a form

that is solvable using numerical methods, we take the inner product of the learning law with

K(xi, ·). Before proceeding with this step, let us recall that the finite-dimensional function

estimate f̂n(t, ·) can be expressed as f̂n(t, ·) =
∑n

j=1 α̂j(t)K(xj, ·) = α̂T (t)K(xc, ·). Thus, for

i = 1, . . . , n,

(
K(xi, ·), ˙̂fn(t)

)
HX

=
(
K(xi, ·),Γ−1

(
BNEx(t)Π∗

n

)∗
P x̃n(t)

)
HX

,

which implies

n∑
j=1

K(xi,xj) ˙̂αj(t) = Γ−1
(
BNEx(t)K(xi, ·), P x̃n(t)

)
HX

.
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Thus, if α̂(t) := {α̂1(t), . . . , α̂n(t)}T , its time derivative is given by the expression

˙̂α(t) = K−1Γ−1K(xc,x(t))B
∗
NP x̃n(t),

where K is the symmetric positive definite Grammian matrix whose ijth element is defined

as Kij := K(xi,xj), Γ := ΓIn is the gain matrix, and

K(xc,x(t)) :=

{
K(x1,x(t)), . . . ,K(xn,x(t))

}T

.

The above equation gives us an expression for the rate at which the coefficients of the

kernels change with time. Therefore, the implementation of the adaptive estimator amounts

to integration of the equations

˙̂xn(t) = Ax̂n(t) +Bu(t) +BNα̂
T (t)K(xc,x(t)), (3.19)

˙̂α(t) = K−1Γ−1K(xc,x(t))B
∗
NP x̃n(t). (3.20)

From the discussion in Subsection 3.3.1, it is clear that the persistence of excitation is suf-

ficient to ensure parameter convergence. However, it is hard and sometimes impossible to

check if a given space is persistently exciting. The following theorem from [82] gives us a

sufficient condition for the persistence of excitation that is easy to verify. However, this

theorem is only applicable to cases where radial basis functions over Rd generate the RKHS.

Furthermore, we can only use this sufficient condition to check the persistence of excitation

of finite-dimensional spaces. However, since all implementation is in the finite-dimensional

spaces, the following theorem provides us a powerful tool to verify the convergence of pa-

rameters in practical applications.

Theorem 3.9. Let ε < 1
2
mini ̸=j ‖xi−xj‖, where xi and xj are the kernel centers {x1, . . . ,xn}.
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For every t0 ≥ 0 and δ > 0, define

Ii = {t ∈ [t0, t0 + δ] : ‖x(t)− xi‖ ≤ ε}.

If there exists a δ such that the measure of Ii is bounded below by a positive constant that

is independent of t0 and the kernel center xi, and if the measure of [t0, t0 + δ] less than or

equal to δ, then the space Hn is persistently exciting in the sense of Definition PE. 3.4.

Algorithm 1: RKHS adaptive estimator implementation
Input: x(t),w+(x0)

Output: f̂n(T, ·)

1 Choose the RKHS HX and the corresponding reproducing kernel K(·, ·).

2 Choose kernel centers xi, for i = 1, . . . , n uniformly distributed on w+(x0),

if X is equal to the state space, choose kernels centers on w+(x0),

if X is a proper subset of the state space, choose kernel centers on the

projection of w+(x0) on to the space X.

3 Run the adaptive estimator until the parameters converge.

Integrate

˙̂xn(t) = Ax̂n(t) +Bu(t) +BNα̂
T (t)K(xc,x(t)),

˙̂α(t) = K−1Γ−1K(xc,x(t))B
∗
NP x̃n(t)

over the interval [0, T ].

4 Define f̂n(T, ·) := α̂T (T )K(xc, ·).

We have to note that the persistence of excitation of Hn does not imply the convergence of

error to 0 since the function f belongs to the infinite-dimensional space HX . However, it can
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be shown that lim sup
t→∞

∥∥∥Πn

(
f − f̂n(t)

)∥∥∥
HX

is bounded above by a positive constant when,

for any t, the function
(
f − f̂n(t)

)
belongs to a family of uniformly equicontinuous functions

and x is uniformly continuous. We refer the reader to [82] for a more detailed discussion on

the convergence of parameters in finite-dimensional spaces.

Algorithm 1 gives a step by step procedure for implementing the RKHS adaptive estimator.

3.5 Numerical Simulation Results

In this section, we consider the prototypical piezoelectric oscillator example modeled in

Section 3.2 to study the effectiveness of an RKHS adaptive estimator and make qualitative

studies of convergence. As emphasized above, the finite-dimensional Equations 3.17 and 3.18

are stated for the general analysis when the unknown function f = f(x1, x2). In this section,

we study qualitative convergence properties in the specific case that f = f(x1). For this

specific example, it is straightforward to show that the finite-dimensional equations have the

form

˙̂xn(t) = Ax̂n(t) +Bu(t) +BNEx1(t)Π
∗
nf̂n(t),

˙̂
fn(t) = Γ−1

(
BNEx1(t)Π

∗
n

)∗
P x̃n(t).

These equations evolve in Rd ×Hn, where

Hn = span{K(x1,i, ·)}

is defined in terms of the kernel on R, K : R × R → R and displacement samples xc =

{x1,i}ni=1 = Ωn ⊆ Ω ⊆ R. With this interpretation and the definition K(xc,x(t)) :=

{K(x1,1, x1(t)), . . . ,K(x1,n, x1(t))}T , the specific governing equations still have the form shown
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in Equations 3.19, 3.20, and Algorithm 1 applies. Tables 3.1 and 3.2 list the numerical values

of the parameters used to build the actual model shown in Equation 3.10. We used the shape

function corresponding to the first cantilever beam mode while modeling the system to get

Equations 3.8 and 3.9. Table 3.2 also shows the input used to drive the actual system.

Table 3.1: Piezoceramic parameters used in simulations

Parameter Value

Piezoceramic (PIC 151)

ρp 7790 (kg/m3)
hp 0.001 (m)
a 0
b l

d31,0 -2.1e-10 (m/V)
d31,1 -36.9746 (m/V)
d31,2 -0.03596 (m/V)
Ep0 0.667e+11 (Pa)
Ep1 -3.328e-12 (Pa)
Ep2 -1.4e+18 (Pa)
ϵ33 2.12e-8 (F/m)

Table 3.2: Other parameters of the actual system used in simulations

Parameter Value

Substrate

Material St 37
ρb 7800 (kg/m3)
Cb 2.089e+11 (Pa)
l 0.4 (m)
b 0.025 (m)
h 0.003 (m)

Damping α 0.1
β 1e-3

Input
u(t) A sin(ωt)

Amplitude A 1 (m/s2)
Frequency ω 22.5 (rad/s)

Figure 3.3 shows the steady-state response of the actual piezoelectric system. This figure

gives us an estimate of maximum and minimum displacement. Under the assumption that

the unknown nonlinear term is a function of displacement only, it is clear that the set

Ω ⊆ R. For this problem, the set Ω is the closed interval from minimum displacement to the

maximum displacement. For the adaptive estimator, the reproducing kernel implemented in
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Figure 3.3: The trajectory in the phase plane starting at [0, 0]T eventually converges to the
steady-state set.

the simulation was selected to be the popular exponential function

K(x, y) = e−
||x−y||2

2σ2 .

Thus, HΩ is the set defined as

HΩ := {K(x, ·) = e−
||x−·||2

2σ2 |x ∈ Ω ⊆ R},

where σ is the standard deviation of the radial basis function. For the simulations, we used

σ = 1e−9. As shown in Figure 3.4, a total of 24 equidistant points were chosen in the interval

Ω = [−0.00037018, 0.00037026] and the kernel functions were centered at these points. It

is clear from the state-state trajectory in Figure 3.3 that the hypotheses for the sufficient

condition given in Theorem 3.9 are satisfied.
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Figure 3.4: Radial basis functions centered at equidistant points in Ω.
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Figure 3.5: Evolution of state error with time.
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Figure 3.6: Actual states and state estimate - final 500 timesteps
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Figure 3.8: Evolution of the parameter estimates α̂1 − α̂6 with time.

Figure 3.5 shows the time history of the state errors. As expected, the state errors eventually

converge to zero. Figure 3.6 shows the final 500-time-steps of the actual states and the

estimated states. Figure 3.7 shows the corresponding phase plot. It is clear from these plots

that the estimator tracks the actual states with almost no error.

Figures 3.8, 3.9, 3.10 and 3.11 show the evolution of the parameters. It is clear from the

figures that the estimated parameters converge to a constant as time t→ ∞.

The plot of the actual function f and estimated function f̂i evaluated on R can be seen

in Figure 3.12. Figure 3.13 shows the pointwise error between the actual and estimated

functions. The figures shows that the actual and estimated functions agree on Ω. Recall that

convergence of the function error is guaranteed on the set Ω in the norm on HX essentially.

This amounts to a guarantee of the pointwise error over the set Ω. No guarantee is made
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Figure 3.9: Evolution of the parameter estimates α̂7 − α̂12 with time.
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Figure 3.10: Evolution of the parameter estimates α̂13 − α̂18 with time.
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Figure 3.11: Evolution of the parameter estimates α̂19 − α̂24 with time.

for values outside Ω. See [79, 80, 81] for more details on the convergence.

3.6 Conclusion

This chapter has introduced a novel approach to model and estimate uncertain nonlinear

piezoelectric oscillators, and the effectiveness of the approach has been validated by testing

it on a nonlinear piezoelectric bimorph beam. The nonlinear function used in the numerical

study depended only on the displacement, but much of the theory applies to more complex

uncertainties. It would be of interest to study the effectiveness of such estimators on more

complex oscillators, ones for which unknown nonlinearities depend on all the states. The

algorithm discussed in this chapter follows a general framework and can be adapted easily to

model many other nonlinearities. Robustness of the current algorithm and its effectiveness

in the presence of noise would be of great interest and remains to be explored and would



110 Chapter 3. RKHS Embedding for Estimation of Nonlinearities in Piezoelectrics

-5 0 5

x
1 10-4

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Figure 3.12: Actual function and function estimate on R.
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complement the findings in the current study.

F Piezoelectric Oscillator - Governing Equations

In this section, we go over the detailed steps involved in the derivation of the infinite-

dimensional governing equation of the piezoelectric oscillator shown in Figure 3.1. The

kinetic energy and the electric potential are given by Equation 3.3 and Equation 3.5, respec-

tively. Using Hamilton’s principle, we get the variational identity

δ

∫ t1

t0

(T − VH)dt = δ

∫ t1

t0

{[
1

2
m
∫ l

0

(ẇ + ż)2dx
]

−
[
1

2
CbIb

∫ l

0

(w′′)2dx+ 2a(0,2)

∫ b

a

(w′′)2dx

+ 2a(2,4)

∫ b

a

(w′′)4dx+ 2b(1,1)

[∫ b

a

w′′dx

]
Ez

+2b(3,1)

[∫ b

a

(w′′)3dx

]
Ez − 2b(0,2)E

2
z

]}
dt = 0. (3.21)

The above variational statement can be rewritten as

δ

∫ t1

t0

(T − VH)dt =

∫ t1

t0

{∫ l

0

(mẇδẇ +mżδẇ)dx

−
∫ l

0

CbIbw
′′δw′′dx− 4a(0,2)

∫ b

a

w′′δw′′dx

− 8a(2,4)

∫ b

a

(w′′)3δw′′dx− 2b(1,1)

(∫ b

a

(δw′′)dx

)
Ez

− 2b(1,1)

(∫ b

a

w′′dx

)
δEz − 6b(3,1)

(∫ b

a

(w′′)2δw′′dx

)
Ez

−2b(3,1)

(∫ b

a

(w′′)3dx

)
δEz + 4b(0,2)EzδEz

}
dt = 0 (3.22)
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After integrating the above statement by parts, we get

∫ t1

t0

{
−
∫ l

0

[
mẅ +mz̈+ CbIbw

′′′′ + 4a(0,2)
(
χ[a,b]w

′′)′′ + 8a(2,4)(χ[a,b](w
′′)3)′′

+ 2b(1,1)χ
′′
[a,b]Ez + 6b(3,1)(χ[a,b](w

′′)2)′′Ez

]
δwdx

−
[
2b(1,1)

(∫ l

0

χ[a,b]w
′′dx

)
+2b(3,1)

(∫ l

0

χ[a,b](w
′′)3dx

)
− 4b(0,2)Ez

]
δEz

−
{
CbIbw

′′ + 4a(0,2)χ[a,b]w
′′ + 8a(2,4)χ[a,b](w

′′)3 +2b(1,1)χ[a,b]Ez + 6b(3,1)χ[a,b](w
′′)2
}
δw′∣∣l

0

+
{
CbIbw

′′′ + 4a(0,2)
(
χ[a,b]w

′′)′ + 8a(2,4)
(
χ[a,b](w

′′)3
)′

+2b(1,1)χ
′
[a,b]Ez + 6b(3,1)

(
χ[a,b](w

′′)2
)′}

δw

∣∣∣∣l
0

}
dt = 0.

Note, in the above statement, the term χ[a,b] is called the characteristic function of [a, b] and

is defined as

χ[a,b](x) :=

 1 if x ∈ [a, b],

0 if x /∈ [a, b].
(3.23)

Since the variation of w and Ez are arbitrary, we can conclude that the equations of motion

of the nonlinear piezoelectric cantilevered bimorph have the form shown in Equations 3.6

and 3.7.

G Single Mode Approximation of the Piezoelectric Os-

cillator Governing Equations

As mentioned earlier, the effects of nonlinearity in piezoelectric oscillators are most noticeable

near the natural frequency of the system. Hence, single-mode models are sufficient to model

the dynamics as long as the range of input excitation is restricted to a band around the first
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natural frequency. Let us introduce the single-mode approximation w(x, t) = ψ(x)u(t). To

make calculations easier, let us introduce this approximation into the variational statement

shown in Equation 3.22. Further, note that

∫ t1

t0

∫ l

0

mẇδẇdxdt = −
∫ t1

t0

∫ l

0

mẅδwdxdt,∫ t1

t0

∫ l

0

mżδẇdxdt = −
∫ t1

t0

∫ l

0

mz̈δwdxdt.

After introducing the approximation for w(x, t) into the variational statement in Equation

3.22 and using the equations shown above, we get the variational statement

0 =

∫ t1

t0

{
−
[
m
(∫ l

0

ψ2(x)dx

)
ü+m

(∫ l

0

ψ(x)dx

)
z̈+ CbIb

(∫ l

0

(ψ′′(x))
2
dx

)
u

+ 4a(0,2)

(∫ l

0

χ[a,b] (ψ
′′(x))

2

)
u+ 8a(2,4)

(∫ l

0

χ[a,b] (ψ
′′(x))

4
dx

)
u3

+ 2b(1,1)Ez

(∫ l

0

χ[a,b]ψ
′′(x)dx

)
+ 6b(3,1)

(∫ l

0

χ[a,b] (ψ
′′(x))

3

)
u2Ez

]
δu

−
[
2b(1,1)

(∫ l

0

χ[a,b]ψ
′′(x)dx

)
u+ 2b(3,1)

(∫ l

0

χ[a,b] (ψ
′′(x))

3

)
u3 − 4b(0,2)Ez

]
δEz

}
dt

Thus, the approximated equation of motion are

m
(∫ l

0

ψ2(x)dx

)
︸ ︷︷ ︸

M

ü+m
(∫ l

0

ψ(x)dx

)
︸ ︷︷ ︸

P

z̈

+ CbIb

(∫ l

0

(ψ′′(x))
2
dx

)
︸ ︷︷ ︸

Kb

u+ 4a(0,2)

(∫ l

0

χ[a,b] (ψ
′′(x))

2

)
︸ ︷︷ ︸

Kp

u

+ 8a(2,4)

(∫ l

0

χ[a,b] (ψ
′′(x))

4
dx

)
︸ ︷︷ ︸

KN

u3 + 2b(1,1)

(∫ l

0

χ[a,b]ψ
′′(x)dx

)
︸ ︷︷ ︸

B

Ez
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+ 6b(3,1)

(∫ l

0

χ[a,b] (ψ
′′(x))

3

)
︸ ︷︷ ︸

QN

u2Ez = 0,

2b(1,1)

(∫ l

0

χ[a,b]ψ
′′(x)dx

)
︸ ︷︷ ︸

B

u(t) + 2b(3,1)

(∫ l

0

χ[a,b] (ψ
′′(x))

3

)
︸ ︷︷ ︸

BN

u3(t) = 4b(0,2)︸ ︷︷ ︸
C

Ez.

These calculations generate the approximated Equations 3.8 and 3.9.
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Chapter 4

Kernel Center Adaptation in the

Reproducing Kernel Hilbert Space

Embedding Method

Abstract

The performance of adaptive estimators that employ embedding in reproducing kernel Hilbert

spaces (RKHS) depends on the choice of the location of basis kernel centers. Parameter

convergence and error approximation rates depend on where and how the kernel centers are

distributed in the state-space. In this chapter, we develop the theory that relates parameter

convergence and approximation rates to the position of kernel centers. We develop criteria

for choosing kernel centers in a specific class of systems - ones in which the state trajectory

regularly visits the neighborhood of the positive limit set. Two algorithms, based on centroidal

Voronoi tessellations and Kohonen self-organizing maps, are derived to choose kernel centers

in the RKHS embedding method. Finally, we implement these methods on two practical

examples and test their effectiveness.

128
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4.1 Introduction

Adaptive estimation of unknown nonlinearities appearing in dynamical systems is a topic

that has been studied over the past four decades. The finite-dimensional versions of such

problems are described in classical texts like [1, 2, 3]. The goal of these methods is to esti-

mate an unknown term appearing in the governing ordinary differential equations (ODEs).

A common assumption in such problems is that all the states are available for measure-

ment. Many of these methods also assume that the unknown function belongs to some

hypothesis space of functions. The particular class of adaptive estimators studied in this

chapter assumes that the hypothesis space is a reproducing kernel Hilbert space (RKHS).

An RKHS HRd is a Hilbert space of functions on the state-space Rd that is defined in terms

of a positive-definite kernel K : Rd×Rd → R. An example of an RKHS is the space generated

by the Gaussian radial basis kernels that have the form K(x, y) := e−ζ∥x−y∥2 , where ζ is pos-

itive. The additional structure induced by the kernel K on HRd enables the proof of crucial

convergence results, even for the infinite-dimensional cases. The finite-dimensional version

of the RKHS adaptive estimators have been studied in [4, 5]. However, the results for the

infinite-dimensional adaptive estimation cases are relatively new and were investigated by

Bobade et al. in [6].

In both the finite and infinite-dimensional cases, the unknown function f ∈ H has the form

f(·) =
∑

i αiKxi
(·), where Kxi

(·) := K(xi, ·) with xi ∈ Rd. Note, the index i ∈ {1, . . . , n} for

the n-dimensional case while i ∈ N for the infinite-dimensional case. We refer to Kxi
∈ H as

the kernel function centered at xi or the regressor function. Thus, we express the unknown

function f as a linear combination of kernels centered at different points in the state-space.

When the set of centers are fixed or held constant, the analysis in [1, 2, 3] are applicable.

This chapter specifically studies how such centers can be chosen adaptively in the RKHS

embedding method.
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The general problem of center selection is familiar in both adaptive estimation and in machine

learning methods based on radial basis functions (RBF) networks. Roughly speaking, the

primary difference between the problem of center selection in these two applications is that

computations are usually static or offline in machine learning, whereas they are recursive or

online in adaptive estimation. One of the most common unsupervised learning methods for

choosing the kernel centers in RBF networks is the k-mean clustering or Lloyd’s algorithm

[7, 8]. Researchers in the machine learning community have developed sophisticated methods

for center selection/adaptation to optimize RBF networks. Some of the early accounts of

such methods can be found in [9, 10, 11]. Self-organizing maps are another alternative for

clustering data and thereby determining the kernel centers. The technique in [12] relies on

adding kernels such that the sum of squared error is minimized. Lin and Chen describe

a method that combines Kohonen self-organizing maps and RBF networks in [13]. Kernel

centers are chosen based on the condition number of the sensitivity matrix in [14].

Variants of self-organizing RBF networks have also been implemented for dynamical system

identification and control. Lian et al. develop a self-organizing RBF network that tunes

the RBF network parameters based on an adaptation law. [15] They used this method

for real-time approximation of dynamical systems. Han et al. describe a version of self-

organizing RBF networks that use a growing and pruning algorithm in [16]. They illustrate

the effectiveness of such networks and their variants [17] for dynamical system identification

and model predictive control. [18, 19, 20]

Researchers have also studied the application of radial basis function networks to control

problems. Some of these studies do not explicitly deal with the problem of center selection.

However, the center adaptation or the kernel adaptation problems are often indirectly ad-

dressed to improve performance. In some cases, even parameter convergence is achieved. An

account of common methods can be found in [21]. Sanner and Slotine implement Gaussian
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networks for direct adaptive control in [22]. The neuro-control technique discussed in [23]

and [24] uses a fixed set of basis functions or kernel centers. On the other hand, in the con-

troller using neural networks proposed in [25], the kernel centers are chosen such that linear

independence of Kxi
is maintained. As per the algorithm given in [26], the kernel parameters

are chosen to approximate the nonlinear inversion error over a compact set. Reference [27]

presents the advantages of adapting the kernel parameters and presents a theory for static

as well as dynamic problems.

An important feature of this chapter is the study of how the center selection problem in

RKHS embedding is related to parameter convergence in adaptive estimation. In adaptive

estimation, we ordinarily use sufficient conditions, referred to as persistence of excitation

(PE) conditions, to ensure parameter convergence. [1, 2, 3] The kernel center selection al-

gorithms in the articles cited above do not take persistence of excitation into consideration.

In most practical cases, the PE conditions are difficult to ensure a priori. They often do

not play a constructive role in coming up with practical algorithms. For this reason, sev-

eral authors have studied adaptive estimation methods which ensure parameter convergence

without PE. In [28], Chowdhary and Johnson show that if the chosen regressors evaluated at

measured data are linearly independent, then we get parameter convergence. Kamalapurkar

et al. extended this work in [29] to relax the assumptions and developed a concurrent learn-

ing technique that implements a dynamic state-derivative estimator. Kingravi et al. in [5]

propose a real-time regressors update algorithm that uses the regressors linear independence

test. In [30], Modares et al. show that parameter convergence can be ensured by checking for

linear independence of the filtered regressor. An alternative class of methods uses Gaussian

processes for adaptive estimation and adaptive control. [31, 32, 33, 34] In these methods,

the kernel centers are chosen at the points corresponding to the measured output data. An

introduction to this theory with examples is given in [35].
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The conventional PE condition is linked to the richness of the regressor functions that are

used to represent the unknown function. In the RKHS embedding method, the modified

PE conditions, studied in [36, 37], are directly related to the kernel center positions in

the state-space. Recent results have shown that the idea of persistence of excitation can

be associated with positive limit sets contained in the state-space. We review this theory

rigorously in Section 4.2. This theory, along with the sufficient condition presented in [4],

give us explicitly what sets in the state-space are persistently excited. Thus, for a particular

class of RKHS adaptive estimators, we can choose kernel centers from these sets. The recent

results in [38] establish that the accuracy of the RKHS embedding method can be shown to

depend on the fill distance of samples in an uniform manifold. As the fill distance decreases

to zero, the finite-dimensional approximation of function estimate converges to the infinite-

dimensional function estimate. At the same time, it is also known that the condition number

of the Grammian matrix that must be inverted to implement the RKHS embedding method is

bounded by the minimal separation of samples that define the space of approximants. These

two observations suggest that strategies to control the distribution of samples in practical

simulations are needed.

In this chapter, we first prove that the infinite-dimensional PE condition implies uniform

convergence of the parameter error in the PE sets (Corollary 4.4). This proof strengthens

the results in [36, 37] in that it provides an intuitive insight into the implications of the PE

condition in the infinite-dimensional RKHS embedding method. We then discuss the theory

behind approximation of the infinite-dimensional adaptive estimator and prove that choosing

kernel centers in PE sets implies convergence of the function estimates at the kernel centers

(Theorem 4.10). This results also strengthens the early results in [6] and provides insights

that connect convergence in the RKHS norm to practical observable results in computation.

Based on these results and the theory in [6, 36, 37, 38], we develop criteria for choosing
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kernel centers (Subsection 4.2.6). We present two kernel center selection algorithms that

satisfy these criteria for certain classes of nonlinear systems. They apply to systems in

which the neighborhoods of points in the positive limit sets are visited regularly by the

state trajectory. In the limited literature on adaptive estimation by RKHS embedding, such

algorithms are yet to be explored to the best of the authors’ knowledge. The first algorithm

is based on constructing centroidal Voronoi tessellations (CVT) of a polygon that surrounds

the measured data. The second approach is based on Kohonen self-organizing maps. The

advantages of these methods are as follows:

1. These algorithms choose kernel centers directly from the state-space. Such methods

work for a large class of regressor functions, or types of kernels that define the RKHS.

2. We do not need explicit equations for the persistently exciting sets, which is the case

in most practical applications. In the absence of such knowledge, it is hard to pick

kernel centers that are evenly distributed in the persistently exciting set.

3. There are commercially available software for computing CVT and Kohonen self-

organizing maps. This makes both methods simple to implement.

We organize the sections in this chapter as follows. In Section 4.2, we present the theory

of adaptive estimation in infinite-dimensional RKHS and basic properties of persistence of

excitation. We also discuss the relation between the approximation rates and distribution of

samples in the state-space. Finally, we present the criteria for center selection and illustrate

the effectiveness of the criteria using an example. In Section 4.3, we present the first method

and theory of CVT based kernel center selection. We also prove theorems on convergence

in this section. Section 4.4 presents the method based on Kohonen self-organizing maps.

Finally, we present two examples that illustrate the effectiveness of both methods in Section

4.5.
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4.2 RKHS Embedding for Adaptive Estimation

4.2.1 Reproducing Kernel Hilbert Space

A reproducing kernel Hilbert space HX is a Hilbert space associated with a positive-definite

kernel K : X×X → R. See [39, 40] for axiomatic definitions of what constitutes an admissible

kernel. The kernel satisfies two properties, (1) K(x, ·) ∈ H for all x ∈ X, and (2) the

reproducing property: for all x ∈ X and f ∈ HX , (K(x, ·), f)HX
= Exf = f(x). Here, the

notation (·, ·)HX
denotes the inner product associated with the Hilbert space HX . The term

Ex is the evaluation functional, which is a bounded linear operator. Throughout this chapter,

we consider RKHS generated by kernels which satisfy the condition that K(x,x) ≤ k̄2 <∞.

This condition implies that the RKHS is continuously embedded in the space of continuous

functions C(X). [6] Many reproducing kernels used in practice satisfy the above condition.

Given a positive-definite kernel, the RKHS HX is generated by

HX := span{K(x, ·)|x ∈ X}.

Note that if the set X is infinite-dimensional, then the RKHS it generates is also infinite-

dimensional. Given a subset Ω ⊆ X, we define the associated RKHS HΩ ⊆ HX by

HΩ := span{K(x, ·)|x ∈ Ω}.

The above-mentioned reproducing property endows the RKHS with a structure that makes

calculations easier. A detailed list of properties of RKHS can be found in [39, 40]. In this

chapter, we are particularly interested in the properties of projection operators that act on

an RKHS. We let PΩ be the HX orthogonal projection operator PΩ : HX → HΩ. From

Hilbert space theory, we know that the operator PΩ decomposes the Hilbert space HX into
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HΩ

⊕
VΩ, where VΩ is the space of elements orthogonal to the elements of the space HΩ.

Since the space HX is an RKHS, the reproducing property implies that for any h ∈ VΩ, we

have h(x) = 0 for all x ∈ Ω. Another important property we use in this chapter is that

for any discrete finite set Ωn, the projection operator PΩn coincides with the interpolation

operator over Ωn, i.e., for all h ∈ HX , and x ∈ Ωn, we have h(x) = (PΩnh)(x). [41]

4.2.2 Adaptive Estimation in RKHS

Consider a nonlinear system governed by the ordinary differential equation

ẋ(t) = Ax(t) +Bf(x(t)),

where x(t) ∈ Rd is the state, A ∈ Rd×d is a known Hurwitz matrix, B ∈ Rd is a known

vector and f : Rd → R is the unknown (nonlinear) function. Note, if the original system

equations do not contain the term Ax(t), we can add and subtract a known Hurwitz matrix

and redefine the unknown nonlinear function to have the form shown above. As noted in [6]

and discussed in more detail there, more general systems can addressed in the analysis that

follows via analogy to the model problem above.

We assume that the unknown function f lives in the RKHS HX , where X = Rd is the

state-space of the system. In other words, we assume that the unknown f has the form

f(·) =
∑∞

i∈I αiKxi
(·) for some {xi}i∈I with I either finite or infinite. We now define an

estimator model of the form

˙̂x(t) = Ax̂(t) +Bf̂(t,x(t)),

where x̂(t) ∈ Rd is the state estimate and f̂(t,x(t)) is the function estimate. For each t, the

function estimate f̂(t) is an element of the space HX . In this chapter, we assume full-state
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measurement. This assumption allows us to define a function estimate f̂(t) that depends on

the actual states x(t). Note that the function estimate also explicitly depends on the time

t. The goal of adaptive estimation is make f̂(t) → f as t → ∞. To achieve this, we define

the rate of evolution of the function estimate by the learning law

˙̂
f(t) = Γ−1(BEx(t))∗P (x(t)− x̂(t)),

where Γ ∈ R, Γ > 0. The notation (·)∗ represents the adjoint of an operator. Additionally, the

term P is a symmetric positive-definite matrix in Rd×d that solves the Lyapunov equation

ATP + PA = −Q, where Q ∈ Rd×d is an arbitrarily chosen symmetric positive-definite

matrix.

If we define the state and function errors as x̃(t) := x(t) − x̂(t) and f̃(t) := f − f̂(t), the

error evolution equations can be expressed as


˙̃x(t)

˙̃f(t)

 =

 A BEx(t)

−Γ−1(BEx(t))∗P 0


︸ ︷︷ ︸

A(t)

x̃(t)

f̃(t)

 . (4.1)

Note, in the above error equation, the term A(t) is a uniformly bounded linear operator, and

the states
{
x̃(t) f̃(t)

}T

evolve in the infinite-dimensional space Rd ×HX .

Standard stability analysis using the Lyapunov’s theorem and Barbalat’s lemma shows that

the norm of the state error ‖x̃(t)‖Rd → 0 as t→ ∞. [6, 36, 37]

4.2.3 Parameter Convergence, PE and Positive Limit Sets

As mentioned earlier, persistence of excitation (PE) conditions are used to prove convergence

of the function estimate to the actual function. Two different definitions of PE in RKHS are
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available in the recent literature on RKHS embedding methods. [36, 37] They are as follows.

Definition 4.1. (PE. 1) The trajectory x : t 7→ x(t) ∈ Rd persistently excites the indexing

set Ω and the RKHS HΩ provided there exist positive constants T0, γ, δ, and ∆, such that

for each t ≥ T0 and any g ∈ HX , there exists s ∈ [t, t+∆] such that

∣∣∣∣∫ s+δ

s

Ex(τ)gdτ
∣∣∣∣ ≥ γ‖PΩg‖HX

> 0.

Definition 4.2. (PE. 2) The trajectory x : t 7→ x(t) ∈ Rd persistently excites the indexing

set Ω and the RKHS HΩ provided there exist positive constants T0, γ, and ∆ such that

∫ t+∆

t

(
E∗
x(τ)Ex(τ)g, g

)
HX

dτ ≥ γ‖PΩg‖2HX
> 0

for all t ≥ T0 and any g ∈ HX .

Note that the PE condition given in Definition 4.2 structurally resembles the classical PE

conditions defined using regressors in finite-dimensional spaces. [1, 2, 3] Recall that the term

PΩ in the above definitions is the orthogonal projection operator that maps elements from

HX to HΩ. The following theorem is a special case of the results from [36, 37] and shows

how these two PE conditions are related. Note that the notion of parameter convergence in

the infinite-dimensional case is given with respect to PE condition in Definition 4.1 only.

Theorem 4.3. The PE condition in Definition PE. 4.1 implies the one in Definition PE.

4.2. Further, if X = Ω is a discrete finite set, the state trajectory t 7→ x(t) is uniformly

continuous and maps to a compact set, and the family of functions defined by {g(x(·)) : t 7→

g(x(t))|g ∈ HX , ‖g‖ = 1} is uniformly equicontinuous, then the PE condition in Definition

PE. 4.2 implies the one in Definition PE. 4.1.
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Furthermore, if the trajectory x : t 7→ x(t) persistently excites the RKHS HΩ in the sense of

Definition PE. 4.1. Then

lim
t→∞

‖x̃(t)‖ = 0, lim
t→∞

‖PΩf̃(t)‖HX
= 0.

We can view the term PΩf̃(t) as an element of the space HΩ. Thus, the above statement

implies that PΩf̃(t) converges to the zero element in the HΩ space. However, this statement

does not imply the convergence or even the existence of the limit of f̃(t) ∈ HX .

The statement limt→∞ ‖PΩf̃(t)‖HX
= 0 is hard to interpret intuitively. The following corol-

lary of the above theorem gives us the intuition about where the convergence is achieved.

Corollary 4.4. If the trajectory x : t 7→ x(t) persistently excites the set Ω and the RKHS

HΩ in the sense of Definition PE. 4.1, then f̂(t) converges uniformly to f on the set Ω as

t→ ∞.

Proof. Suppose the projection operator PΩ decomposes the function f̃(t) into f̃(t) = PΩf̃(t)+

v(t), where PΩ(f̃(t)) ∈ HΩ and v(t) ∈ VΩ. Since v(t,x) = 0 for all x ∈ Ω, we have

f̃(t) = PΩf̃(t,x). Thus, for all x ∈ Ω, we have

|f̃(t)| = |PΩf̃(t,x)| = |ExPΩf̃(t)| ≤ ‖Ex‖‖PΩf̃(t)‖HX
.

But we have assumed in this chapter that the kernel K that induces HX satisfies K(x,x) ≤

k̄2 < ∞ for all x ∈ X. Since the evaluation functional is consequently uniformly bounded,

the above inequality holds for all x ∈ Ω. Taking the limit t → ∞ and using Theorem 4.3

gives us the desired result.
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The above corollary clearly shows that, if the PE condition holds and the kernel satisfies

K(x,x) ≤ k̄2 <∞, then f̂(t,x) → f(x) for all x ∈ Ω. Generally, we would prefer the whole

space to be persistently exciting, i.e. Ω = X. However, this is not the case in most practical

applications. Furthermore, the above PE definitions are hard to understand intuitively and

difficult, if not impossible, to verify in real applications. The following theorem from [42]

shows us exactly where to look for persistently exciting sets in the state-space. The theorem

assumes that the RKHS space separates closed sets.

Definition 4.5. We say the RKHS HX separates a set A ⊆ X if for each b /∈ A, there is a

function f ∈ HX such that f(a) = 0 for all a ∈ A and f(b) 6= 0.

The RKHS generated by the Gaussian kernel, which is extensively used for RKHS based

adaptive estimation and machine learning, does not satisfy the above condition for all closed

sets. A detailed account for RKHS that separate closed sets can be found in [43]. In this

chapter, we use the Sobolev-Matern kernels, which satisfy the above condition. A sufficient

condition for an RKHS to separate closed sets is that it contains a rich family of bump

functions.

Theorem 4.6. Let HX be the RKHS of functions over X and suppose that this RKHS

includes a rich family of bump functions. If the PE condition in Definition PE. 4.2 holds

for Ω, then Ω ⊆ ω+(x0), the positive limit set corresponding to the initial condition x0.

This theorem gives us a necessary condition for a set to be persistently excited. While design-

ing a adaptive estimator, this necessary condition can tell us where to look for persistently

excited sets in the state-space.
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4.2.4 Approximations, Convergence Rates and Sufficient Condi-

tion

For practical implementation, we approximate the infinite-dimensional adaptive estimator

equations given in the previous subsection. Let {Ωn}n∈N be a finite nested sequence of subsets

of Ω, Further, let {HΩn}n∈N be the corresponding subspaces of HX generated by the finite

sets Ωn. Now, define PΩn as the orthogonal projection operator from HX to the subspace

HΩn such that limn→∞ PΩnf = f for all f ∈ HX . With this definition of approximation, we

write the finite-dimensional adaptive estimator model and the learning law as

˙̂xn(t) = Ax̂n(t) +BEx(t)Π∗
nf̂n(t),

˙̂
fn(t) = Γ−1

(
BEx(t)Π∗

n

)∗
P x̃n(t)

with x̃n := x − x̂n. Since the RKHS HΩn is finite-dimensional, the basis of HΩn is the set

{Kxi
|xi ∈ Ωn}. We now note that the finite-dimensional function estimate f̂n(t) has the

form f̂n(t) :=
∑n

i=1 α̂i(t)Kxi
. Using the reproducing property of the kernel, we rewrite the

above finite-dimensional learning law as

˙̂α(t) = K−1Γ−1K(xc,x(t))B
∗P x̃n(t), (4.2)

where α̂(t) := {α̂1(t), . . . , α̂n(t)}T , K is the symmetric positive definite Grammian matrix

whose ijth element is defined as Kij := K(xi,xj), Γ := ΓIn is the gain matrix, and

K(xc,x(t)) :=

{
K(x1,x(t)), . . . ,K(xn,x(t))

}T

.

The new learning law defines the rate of evolution of the coefficients, as opposed to the old

learning law which defines the rate of evolution of the function f̂n(t). This step is essential



4.2. RKHS Embedding for Adaptive Estimation 141

for implementation purposes. We refer the reader to [44] for the intermediate steps involved

in the derivation.

Note, the PE condition implies the convergence of the infinite-dimensional function estimate

f̂(t) to f . It does not imply anything about the convergence of the approximation of the

function estimate f̂n(t) to f . On the other hand, the following theorem, proved in [6], shows

that the term f̂n(t) to f̂(t) as n→ ∞.

Theorem 4.7. Suppose that x ∈ C([0, T ],Rd) and that the embedding i : HX ↪→ C(Ω) is

uniform in the sense that

‖f‖C(Ω) ≡ ‖if‖C(Ω) ≤ C‖f‖HX
.

Then for any T > 0 and t ∈ [0, T ],

‖x̂− x̂n‖C([0,T ];Rd) → 0,

‖f̂(t)− f̂n(t)‖C([0,T ];Rd) → 0,

as n→ ∞.

Thus, as we choose denser finite discrete sets in Ω, the approximation of the function estimate

f̂n(t) gets closer to the function estimate f̂(t), which in turn converges to the actual function

f as t→ ∞ if the PE condition holds. The above theorem does not explicitly tell us how to

choose the set Ωn ⊆ Ω. However, when the set Ω is a compact smooth Riemannian manifold

embedded in Rd with metric d, the rate at which f̂n(t) converges to the f̂(t) depends on how

the elements of the set Ωn are distributed in the set Ω. This distribution is defined in terms
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of the fill distance

hΩn,Ω := sup
x∈Ω

min
ξi∈Ωn

d(x, ξi).

Theorem 4.8. Let Ω ⊆ X := Rd be a k-dimensional smooth manifold, and let the native

space HX be continuously embedded in a Sobolev space W τ,2(X) with τ > d/2, so that

‖f‖W τ,2(Rd) ≲ ‖f‖HX
. Define s = τ − (d − k)/2 and let 0 ≤ µ ≤ dse − 1. Then there is a

constant hΩ such that if hΩn,Ω ≤ hΩ, then for all f ∈ RΩ(HX) we have

‖(I − PΩn)f̂(t)‖Wµ,2(Ω) ≲ hs−µ
Ωn,Ω

‖f̂(t)‖RΩ(HX).

In the above theorem, the notation RΩ(HX) represents the restriction of the space HX to

the set Ω, and the notation a ≲ b implies that there exists a positive constant c such that

a ≤ cb. This theorem requires a lot of technical details and we direct interested readers to

[38] for the detailed explanation of the rigorous theory and proofs. In this chapter, we are

interested in the implications of the theorem. The theorem states that the fill distance hΩn,Ω

defines the rate at which the norm of the error f̂(t)− f̂n(t) converges to zero.

Sufficient Condition

In all the discussion above, we assume that we have knowledge of the persistently excited

set Ω. In most practical cases, it is impossible to determine this set. However, there is a

much more practical and intuitive way for selecting the kernel centers in the set Ωn when

the RKHS is generated by a strictly positive definite kernel. For the precise hypothesis of

the theorem below, the reader should see [45]: the context of the following theorem is rather

detailed.

Theorem 4.9. Suppose the RKHS is generated by a strictly positive definite kernel and the
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hypotheses of [45] hold. Let ε < 1
2
mini ̸=j ‖xi − xj‖, where xi and xj are the kernel centers

{x1, . . . ,xn} ⊆ ω+(x0). For every t0 ≥ 0 and δ > 0, define

Ii := Ii,ϵ,δ := {t ∈ [t0, t0 + δ] : ‖x(t)− xi‖ ≤ ε}.

If there exists a δ = δ(ε) such that the measure of Ii is bounded below by a positive constant

that is independent of t0 and the kernel center xi, and if the measure of [t0, t0 + δ] is less

than or equal to δ, then the space Hn is persistently exciting in the sense of PE 4.2.

Intuitively, the above theorem states that the neighborhoods of the points in the finite PE

set Ωn are visited by the state trajectory infinitely many times, and the time of visitation is

bounded below in a certain sense. Note that the above sufficient condition implies PE 4.2.

When the hypotheses of Theorem 4.3 hold, we can conclude that the sufficient condition

given in Theorem 4.9 implies PE 4.1. While implementing the adaptive estimator, if we

only know that the actual function f ∈ HX with X an infinite set, (as usual) the sufficient

condition given in Theorem 4.9 only implies ultimate boundedness of the function estimate

instead of convergence, in particular when we use the dead zone gradient law. Notice that this

ultimate bound actually implies a stronger result than the one in the conventional analysis

in Euclidean space: here, the ultimate bound is explicit in terms of the approximation space

error. [45]

4.2.5 Center Selection Problem and Example

In the last section, we made no assumption about the space in which function estimate f̂(t)

lives. The function estimate f̂(t) can live in HX and is not restricted to HΩ. This leads us

to ask the question of why it is necessary for the kernel centers (elements of the set Ωn) to

be contained in the set Ω. It is indeed possible to approximate the function f̂(t) using kernel
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centers that are outside of the set Ω. However, if the centers are contained in the set Ω, the

function estimate will converge to the actual function values at those centers. Before we take

a look at the next theorem, note that the basis of the space HΩn is the set {Kxi
|xi ∈ Ωn}.

This implies that the functions PΩnf and f̂n(t) have the form PΩnf =
∑n

i=1 αiKxi
and

f̂n(t) =
∑n

i=1 α̂i(t)Kxi
.

Theorem 4.10. Suppose the set Ω is persistently exciting, and the set Ωn ⊆ Ω. Then

limt→∞ f̂n(t,xi) = f(xi) for all x ∈ Ωn and i ∈ {1, . . . , n}. Furthermore, for i ∈ {1, . . . , n},

α̂i(t) → αi as t→ ∞.

Proof. Recall that f̂n(t) := PΩn f̂(t), where PΩn : HX → HΩn . The set Ωn is discrete

and finite. In RKHS, the projection operator from infinite-dimensional space to a finite-

dimensional space coincides with the interpolation operator. In other words, for a given t, we

have f̂n(t,xi) = f̂(t,xi) for all xi ∈ Ωn. From Corollary 4.4, we have limt→∞ f̂n(t,xi) = f(xi)

for all xi ∈ Ωn. This in turn implies that, for i ∈ {1, . . . , n}, the coefficients α̂i(t) converge

to αi as t→ ∞ since the set {Kxi
|xi ∈ Ωn} forms the basis of the space HΩn .

The above theorem shows that selecting kernel centers in the PE set Ω will result in the

approximated function estimate f̂n(t) approaching the actual function value at the kernel

centers. In addition to this fact, the theory on approximation rates holds only when the

kernel centers are contained in the set Ω. This makes it advantageous to choose Ωn ⊆ Ω. The

following example helps us understand what happens when the kernel center is not exactly

in the persistently excited set. The example considers the case where Ω is a singleton set.

The analysis for more general PE sets is analogous to the one given below.

Example 4.11. Suppose the persistently excited set Ω = {ξ}. Suppose the kernel center

is at Ωn = {ξ̂}. According to Corollary 4.4, given ε > 0, there exists a T0 such that for
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any t > T0, |f(ξ) − f̂(t, ξ)| < ε. Suppose we stop the adaptive estimator at T > T0. We

know that by the properties of RKHS, f̂(T, ξ̂) = f̂n(T, ξ̂). Since f̂ and f̂n are continuous,

given ε > 0, there exists δ such that if ‖ξ − ξ̂‖ < δ, then |f̂(T, ξ) − f̂(T, ξ̂)| < ε and

|f̂n(T, ξ)− f̂n(T, ξ̂)| < ε. Thus, we conclude that if ‖ξ− ξ̂‖ < δ, then |f(ξ)− f̂n(T, ξ)| < 3ε.

Note, as ξ̂ → ξ, |f(ξ)− f̂n(T, ξ)| approaches a value that is strictly less than ε.

4.2.6 Center Selection Criteria

Based on the theory presented in the previous subsections, we list the following criteria for

choosing the kernel centers.

(C1) The kernel centers should be contained in or be as close as possible to the positive

limit set based on Theorem 4.6.

(C2) The kernel centers should be evenly distributed when possible. There are two reasons

for selecting this criteria.

(i) The linear dependency of the kernels will be high if the centers are placed too

close to each other. This will increase the condition number of the Grammian

matrix in Equation 4.2.

(ii) On the other hand, if the centers are too far apart, the fill distance increases,

which in turn reduces the approximation rates based on Theorem 4.8.

(C3) The neighborhood of the centers should be visited by the state trajectory regularly.

This is to satisfy the sufficient condition for PE based on Theorem 4.9.

Note: The above listed criteria assumes knowledge of the positive limit set and the state-

trajectory.



146
Chapter 4. Kernel Center Adaptation in the Reproducing Kernel Hilbert Space

Embedding Method

Figure 4.1: Random Centers - Pointwise error |f(x)− f̂n(T,x)|. The marker ∗ and the red
line represent the kernel centers and the limit set, respectively.

4.2.7 Example: The case when we have a priori knowledge of pos-

itive limit set

We test the above listed criteria on a simple practical example. We consider a nonlinear

single-mode undamped piezoelectric oscillator with no input to test the above criteria. The

governing equations have the form

ẋ1ẋ2
 =

 0 1

− K̂
M

− C
M


︸ ︷︷ ︸

A

x1x2
+

 0

− P
M

︸ ︷︷ ︸
B

z̈(t)︸︷︷︸
u(t)

+

0

1

︸ ︷︷ ︸
B

(
−K̂N1

M
x31(t)−

K̂N2

M
x51(t)

)
︸ ︷︷ ︸

f(x(t))

, (4.3)

where M, K̂, C, P are the modal mass, modal stiffness, modal damping, and modal input

contribution term of the piezoelectric oscillator. The variables K̂N1 , K̂N2 are the nonlinear
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Figure 4.2: Uniform Centers - Pointwise error |f(x)− f̂n(T,x)|. The marker ∗ and the red
line represent the kernel centers and the limit set, respectively.

stiffness terms. The terms x1, x2 and z are the modal displacement, modal velocity and

base displacement of the oscillator, respectively. The steps involved in deriving the above

governing equations can be found in [44]. Typically, the magnitudes of the velocity and

displacement values are not of the same order. In such cases, we have to use kernels that are

skewed in a particular direction. Alternatively, we scale one of the states as x1 = Sx̃1, where

S is a positive constant. Note, after scaling, x(t) := {x̃1(t), x2(t)}T . In our simulations, we

choose M = 0.9745, K̂ = 329.9006, K̂N1 = −1.2901 × 105 and K̂N2 = 1.2053 × 109. For

the undamped, no input case, i.e., C = 0 and P = 0, the total energy is conserved. In

other words, the trajectory is always contained in the limit set ω+(x0), where x0 ∈ R2 is

the initial condition. Note that any arbitrary discrete finite set in ω+(x0) is visited by the

state trajectory infinitely many times. Since we have a priori knowledge of the limit set

ω+(x0) for a given initial condition, we choose kernel centers in the set Ω and integrate the
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Figure 4.3: Variation of ‖α− α̂(t)‖Rn with time.

equations

˙̂xn(t) = Ax̂n(t) +Bα̂T (t)K(xc,x(t)),

˙̂α(t) = K−1Γ−1K(xc,x(t))B
∗P x̃n(t)

over the interval [0, T ] for some T > 0. In all our simulations, we use the Sobolev-Matern

3, 2 kernel, which has the form

K3,2(x,y) =

(
1 +

√
3‖x− y‖

l

)
exp

(
−
√
3‖x− y‖

l

)
,

where l is the scaling factor of length. [46]

To analyze the above-listed criteria’s effectiveness, we tested the adaptive estimator with a
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random and a deterministic, uniform collection of kernel centers. We set S = 0.02, l = 0.2,

Γ = 0.001 and n = 40. The states and the parameters are initialized at x0 = {1.5, 0}T

and αi(0) = 1 for i = 1, . . . , n, respectively. For the uniform kernel center selection, we

first calculate the distance between two adjacent kernel centers ln when they are distributed

uniformly in the positive limit set. Since we know the exact equation of the positive limit set,

[36] we can calculate the total length and hence the length of the arc between two adjacent

kernel centers. Given a kernel center, we choose the adjacent kernel center at a distance

ln. We repeat this procedure until we choose the required number of kernel centers that

are distributed uniformly in the positive limit set. For choosing the kernel centers for the

random case, we first ran the uniform center selection algorithm for n = 48 case, and then

used the MATLAB function randperm to select n = 40 kernel centers randomly. Note that

the MATLAB function randperm uses a uniform pseudorandom number generator algorithm.

Figures 4.1 and 4.2 show the pointwise error |f(x) − f̂n(T,x)| after running the adaptive

estimator for T = 2000 seconds for a paritcular case of random and uniform selection of

kernel centers. It is clear from the figures that the pointwise error is low in the case of

uniform sampling. Figure 4.3 shows how the norm ‖α − α̂(t)‖Rn varies with time t for

both the random and uniform center selection methods. From Theorem 4.10, we know that

α̂(t) → α, where α = {α1, . . . , αn}T and α̂(t) = {α̂1(t), . . . , α̂n(t)}T . It is clear from Figure

4.3 that the coefficient error norm converges rapidly to zero for the uniform centers case.

For the random centers case, the error norm does not even start converging in the first 2000

seconds.

In the above problem, it is assumed that we have an explicit equation for the positive limit set

ω+(x0) for a given initial condition x0. Furthermore, the state trajectory is contained in the

set ω+(x0). This makes it possible to choose kernel centers that are uniformly distributed.

In most practical examples, we cannot derive an explicit expression for the set ω+(x0). We
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only have samples of the state-trajectory that is contained in or converges to the positive

limit set ω+(x0). In the following two sections, we present kernel center selection methods

that can be implemented when we do not have explicit knowledge of the positive limit set

or when the state trajectory is not contained in the positive limit set. Both methods are

applicable to systems for which the state trajectory visits the neighborhoods of all the points

in the positive limit set ω+(x0). We next consider algorithms that do not rely on a priori

knowledge of the positive limit set ω+(x0).

4.3 Method 1: Based on CVT and Lloyd’s Algorithm

The first method we propose is based on building centroidal Voronoi tessellations (CVT)

around the positive limit set. This method relies on samples taken in the positive limit

set. We implement this approach for systems where the state-trajectory is contained in the

positive limit set or converges to the same in finite time. We assume that there is a dense

sampling Ξ of the positive limit set, i.e. Ξ = ω+(x0). Let {Ξm}∞m=1 be a sequence of finite

subsets of Ξ such that Ξm ⊂ Ξm+1 for allm ∈ N and ∪∞
m=1Ξm = Ξ, where Ξm = {ξ1, . . . , ξqm}.

The term qm represents the number of samples in the set Ξm. Given a set of samples Ξm, we

construct a region Qm that is assumed to enclose the positive limit set. Before we go into

the details of implementation, let us take a look at the theory behind Voronoi partitions.

4.3.1 Voronoi Partition

Suppose the state-space X is endowed with the metric d(·, ·). In this chapter, we use the

Euclidean metric. Let Qm ⊆ X be a convex polytope and let Pm = {pm,1, . . . ,pm,nm} be

a set of nm points. The Voronoi partition V(Pm) generated by the set of points Pm is the
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collection of nm polytopes, Pm,1, . . . , Pm,nm , defined by

Pm,i = {x ∈ Qm | d(x,xi) ≤ d(x,xj), for j = 1, . . . , nm, j 6= i}

for i = 1, . . . , nm. An edge of the polytope Pm,i is the region Pm,i ∩ Pm,j or Pm,i ∩ ∂Qm

for some j 6= i. We say that two polytopes are adjacent when they share a common

edge. The notation ∂Qm denotes the boundary of the region Qm. We use the notation

E(V(Pm), Qm) to denote the union of all edges of the polytopes in V(Pm). If R ⊆ Qm, then

E(V(Pm), R) = E(V(Pm), Qm)∩R. A particular class of Voronoi partitions are the centroidal

Voronoi partitions or centroidal Voronoi tessellations, where each point generating the poly-

tope is also its centroid. We use the notation CPm,j
to denote the centroid that generates

the polytope Pm,j. Note, given a region Y ⊆ X, its centroid CY is defined as

CY =
1

MY

∫
Y

yρ(y)dy,

where MY :=
∫
Y
ρ(y)dy is the total mass of Y , and ρ(y) is the mass density function over

Y . When the polytope Qm is convex, the partitions are also convex. This in turn implies

that the centroid of each partition is contained inside the polytope. For a fixed number of

partitions nm, a convex polytope Qm can have more than one centroidal Voronoi partition.

While implementing this method for kernel center selection, the term nm corresponds to the

number of centers. The subscript m corresponds to the sampling subset Ξm. The number of

kernel centers depends on the samples collected in this method.

4.3.2 Lloyd’s algorithm

Lloyd’s algorithm is used to construct the centroidal Voronoi tessellations for a given convex

polytope Qm and a fixed number of partitions nm. It involves the following steps,
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(i) Choose an initial set of points Pm.

(ii) Calculate the Voronoi partitions V(Pm) for the nm points.

(iii) Calculate the set of centroids {CPm,1 , . . . , CPm,nm
} of the Voronoi partitions.

(iv) Set Pm = {CPm,1 , . . . , CPm,nm
} and go back to the second step.

The above set of steps are evaluated until convergence of centroids is achieved. The conver-

gence of the algorithm for the convex case is proved in [47].

4.3.3 Implementation

Figure 4.4: Examples of region Qm constructed around the Ξm ⊆ ω+(x0). The red curves
are formed by connecting the samples Ξm. The blue region represents the region Qm.

The idea behind this approach is that we have a finite sampling Ξm of the positive limit

set ω+(x0). We use this finite sampling Ξm to construct a region Qm that encloses the

positive limit set ω+(x0). We then calculate the centroidal Voronoi partitions of the polygon

and choose the kernel centers as the centroids of the partitions. In our implementation, we

assume the mass density function as ρ(q) = 1 for all q ∈ Qm and ρ(q) = 0 elsewhere. In the

following discussion, we formalize this implementation.

Examples of the region Qm for two different positive limit sets is shown in Figure 4.4. In the
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case (b) where the positive limit set ω+(x0) is straight line, the region Qm is nothing but the

rectangle enclosing the set. For the case (a) where the positive limit set ω+(x0) is a closed

curve that is symmetric about the origin in the figure, the region Qm is first formed by the

joining the samples of the positive limit set to form a closed curve. The closed curve is then

scaled to form a larger and smaller closed curves. We choose Qm to be the region enclosed

by the larger and smaller closed curves. As evident from Figure 4.4, the region Qm is not

always convex. Thus, the theory in the previous subsection is not strictly applicable. Let

Q′
m be the convex hull of the polytope Qm. We know that the Lloyd’s algorithm converges

for the convex case. [47] The mass density function is still equal to 1 on Qm and 0 elsewhere.

Suppose we choose nm points in Q′
m and run the Lloyd’s algorithm. As a result, we get a set

of centroids P ′
m that generate the centroidal Voronoi partition V(P ′

m). Now we define the

collection V(Pm) := {P ′
m,1∩Qm, . . . , P

′
m,nm

∩Qm}. It is easy to see that V(Pm) is a centroidal

Voronoi partition of the region Qm generated by the centroids Pm = P ′
m.

Thus, the Lloyd’s algorithm indeed converges for the case in question. However, the poly-

topes in V(Pm) are not necessarily convex. And hence, the centroid pm,i ∈ Pm need not

be contained in the polytope P ′
m,i ∩ Qm for i = 1, . . . , nm. The centers need not even be

contained in the region Qm. This is certainly not desirable when implementing Lloyd’s algo-

rithm and CVT for problems like sensor location or multirobot coordination. [48] However,

the goal of our problem is to choose kernel centers that are close to the positive limit set. In

the following analysis, we show that with sufficient number of samples and careful selection

of the the region Qm, we can often choose centers close to the positive limit set.

4.3.4 Convergence for Restricted Cases

We restrict the following analysis to positive limit sets contained in R2 that are homeomorphic

to a line or a circle. In other words, the positive limit set is an open or closed curve.



154
Chapter 4. Kernel Center Adaptation in the Reproducing Kernel Hilbert Space

Embedding Method

With careful selection of Qm, it is possible to show that we can choose kernel centers that

approximate the positive limit set. The region Qm is constructed such that the following

conditions holds.

Condition 4.12. Associated with each Ξm is a region Qm such that

1. the maximum width wm of the region satisfies wm < rm, where 0 < rm < rm−1 for all

m ∈ N,

2. the region Qm is nested in Qm−1 for all m ∈ N,

3. the sequence {rm}∞n=1 converges to 0,

4. for each rm, there is an integer nm such that the polytope Pm,j ⊆ Bcrm(CPm,j
) for all

j = 1, . . . , nm. Here, the term Bcrm(CPm,j
) is the closed ball of radius crm centered at

the centroid CPm,j
that generates the polytope Pm,j with c a fixed positive constant.

We can think of the maximum width wm of the region Qm given in Figure 4.4 (a) as the

Hausdorff distance between the inner and outer boundaries of the region Qm. In the case

of the region given in Figure 4.4 (b), the maximum width wm corresponds to the Hausdorff

distance between the two boundaries of the region Qm that are parallel to the positive limit

set.

Theorem 4.13. Suppose Condition 4.12 holds. Then d(ω+(x0), Pm) → 0 as m→ ∞, where

d(·, ·) is the Hausdorff distance, ω+(x0) is the positive limit set and Pm = {CPm,1 , . . . , CPm,nm
}

is the set of centroids that generate the CVT V(Pm).

Proof. We fist note that the centroid of each polytope is contained in Bcrm(CPm,j
) since the

ball is convex. Since the maximum width of the region wm satisfies wm < rm, it is clear that
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d(ω+(x0), Qm) < rm. On the other hand, since the ball Bcrm(CPm,j
) contains the polytope

Pm,j, we have d(Pm,j, {CPm,j
}) < crm for any j = 1, . . . , nm. Note that the bound crm on

d(Pm,j, {CPm,j
}) is uniform. Also, recall that Qm = ∪nm

j=1Pm,j, and Pm = ∪nm
j=1{CPm,j

}. Thus,

we have d(Qm, Pm) < crm. Using triangle inequality, we get d(ω+(x0), Pm) < (1 + c)rm.

Since rm → 0 as m → ∞, we conclude that the centroids approach the positive limit set as

m→ ∞.

The assumptions in the above theorem are very strong because of Condition 4.12. It is

possible to relax some of the assumptions by considering the geometric properties of the

partitions. But, from a practical standpoint, the maximum number of samples of the positive

limit set is limited by the measurement equipment. This theorem provides a framework for

an implementation that agrees with intuition - if new samples of the positive limit set are

measured, choose Qm such that rm is reduced and number of kernel centers nm are increased.

For a given rm, the number of kernel centers cannot be indefinitely increased. Consider the

example in Figure 4.5. Due to numerical errors, the Lloyd’s algorithm converges to a CVT

in which the kernel centers do not lie on the positive limit set when nm is large. On the

other hand, the term rm cannot be decreased indefinitely, since the region Qm, built based

on finite number of samples, may no longer contain the positive limit set. Thus, the number

of samples collected restrict the effectiveness of this method.

To avoids CVTs that are similar to the one given in Figure 4.5 (b), we introduce the following

condition. Let Q̄ represent the outer rectangle that is contained in R2 in Figure 4.5 and let

V̄l represent the CVT made up of l horizontally stacked identical rectangles. Figure 4.5 (a)

depicts the CVT V̄5 of Q̄. The following condition inherently ensures that the kernel centers

are evenly distributed in or near the positive limit set.

Condition 4.14. Let l = 1, . . . , nm. For any possible l, consider an arbitrary collection of
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l polytopes Pm,i1 , . . . , Pm,il in the partition V(Pm) such that each polytope is adjacent to at

least one other polytope in the collection. The union of edges E(V(Pm), Pm,i1 ∪ . . . ∪ Pm,il)

is homeomorphic to the union of edges E(V̄l, Q̄) of the CVT V̄l.

Algorithm 2: CVT based kernel center selection
Input: Ξm, nm

Output: Pm

1 Choose the constant rm. Construct region Qm such that the positive limit set

ω+(x0) is contained in Qm.

2 Choose nm separate points in the convex hull of Qm.

3 Run the Lloyd’s algorithm using the points chosen in Step 2 as the initial

points.

(i) Calculate the Voronoi partitions V(Pm) for the nm points.

(ii) Calculate the centroids CPm,1 , . . . , CPm,nm
of the Voronoi partitions V(Pm).

(iii) Set Pm = {CPm,1 , . . . , CPm,nm
} and go back to the Step 3 (i).

4 The above steps are repeated until convergence is achieved.

5 If the CVT from Step 4 does not satisfy Condition 4.14, choose a constant sm

such that sm < rm. Set rm = sm and go back to Step 2.

If the CVT satisfies Condition 4.14, choose the set of centroids of the CVT

Pm as the kernel centers for the adaptive estimator.

Algorithm 2 shows the steps involved in implementing this method. Step 4 in the algorithm

can be implemented using commercially available tools like MATLAB, which makes the

algorithm extremely straightforward for implementation. The inputs to the algorithm are

the samples Ξm and the number of kernel centers nm. We iteratively choose rm in the

algorithm until Condition 4.14 is satisfied. The output of the algorithm is the set of kernel

centers, which can be implemented in the adaptive estimator algorithm.
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Figure 4.5: Increasing the number of kernel centers leads to completely different types of CVT
while using the same Lloyds algorithm. The markers o and ∗ represent the initial positions
and final converged positions of the kernel centers, respectively. The red line represents the
limit set.

4.4 Method 2: Based on Kohonen Self-Organizing Maps

The second approach presented in this chapter is based on Kohonen self-organizing maps

(SOMs), which were first introduced by Teuvo Kohonen. [49] Self-organizing maps are typi-

cally used for applications like clustering data, dimensionality reduction, pattern recognition,

and visualization. Thus, given a set of samples in the input space, these maps can be used to

produce a collection of neurons on a low-dimensional manifold that represents the samples’

distribution. In our problem, the input space is the state-space, and the samples are the

state measurements. The neurons on the low-dimensional manifold are the kernels centers.

The position of the kernel centers in the state-space are represented by the weight vectors

that the SOM algorithm generates.

One of the critical features of self-organizing maps is that the underlying topology between

the input space (the original dataset) and the output space is maintained. Intuitively, points

that are close in the original dataset are mapped to neurons that are close to each other (in

some predefined metric). For our problem, we want the kernel centers to be evenly spaced

in the state-space in addition to being close to the measurement samples. To ensure this, we

choose the initial set of kernel centers on a manifold that is homeomorphic to the positive
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limit set. This requires knowledge of the topology of the positive limit set. Before going over

the details, let us take a look at the theory of Kohonen self-organizing maps.

Suppose we have the set of samples Ξm = {ξm,1, . . . , ξm,qm}. In the context of this chapter,

the set Ξm is the set of samples of the positive limit set ω+(x0). Let nm represent the number

of kernel centers pm,1, . . . ,pm,nm we want to choose. We associate the ith kernel center with

a weight vector pm,i(t) ∈ Rd for i = 1, . . . , nm. Note that the weight vectors depend on time

and at any given instant in time t, the weight vector is an element of Rd. The neighborhood

function Nj defines neighbors of the center j. The choice of the neighborhood function

depends on the topology we want to define on the kernel centers. The neurons (or the kernel

centers) are often chosen in the form of a linear grid or a 2D grid, and the neighbors in such

grids are naturally defined. The Kohonen self-organizing map’s implementation involves the

following steps. We first randomly choose a sample ξm,k from the sample set Ξm, where

k ∈ {1, . . . , qm}. We then determine the winning neuron - the kernel center that is closest

to the sample ξm,k. The winning neuron i at a given instant t is the one which satisfies the

condition

d(ξm,k,pm,i(t)) ≤ d(ξm,k,pm,j(t)) (4.4)

for j = 1, . . . , nm. We now update the weight vectors using the evolution equation

dpm,j(t)

dt
= βj(t)Nj(t, i) (ξm,k − pm,j(t)) (4.5)

for j = 1, . . . , nm. In the above equation, 0 ≤ βj(t) < 1 defines the rate of convergence

of the center j. The neighborhood function determines which neighbors of the node i get

updated. For convergence, we require that βj(t) → 0 and Nj(t, i) → 0 as t → ∞, for

any i, j ∈ {1, . . . , nm}. While implementing this algorithm, we can observe the SOM goes
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through a topological ordering phase during which the grid of neurons try to match the

patterns if the sample in the input space before convergence.

Note: The self-organizing map algorithm is easy to implement. However, many theoretical

aspects of these maps, like convergence, remain unanswered for the general case. Researchers

have studied and proved the theory for the 1D linear array case, when the nodes are arranged

on a line. A review of some of the theoretical results are in [50].

4.4.1 Implementation

To implement Kohonen self-organizing maps for kernel center selection, we modify the above-

discussed algorithm. In some dynamical systems, the trajectory approaches the positive limit

set but is never contained in the set. In such cases, we only have measurements of the states

and not the samples of positive limit set. Furthermore, arbitrary selection of state-samples

might result in picking points away from the positive limit set. This in turn affects the

convergence of the kernel centers to points inside the positive limit set. Hence, as opposed

to choosing random samples ξm,j from the set Ξm, we use the state measurement x(t) at a

given time instant to determine the winning node. We replace the term ξm,j with x(t) in

Equations 4.4 and 4.5. This change enables us to implement this method for a more general

class of systems in real-time.

A Kohonen self-organizing map algorithm gives a low-dimensional representation of all sam-

ples (which include the ones that are outside the limit set). On the other hand, the objective

of our problem is to choose kernel centers on the positive limit set such that they are spaced

as uniformly as possible. To ensure this, we choose the topology of the output space to

match that of the positive limit set. In other words, we choose the initial kernel centers and

the neighborhood function such that the topology is homeomorphic to the positive limit set.



160
Chapter 4. Kernel Center Adaptation in the Reproducing Kernel Hilbert Space

Embedding Method

For example, if the positive limit set is a closed curve in R2, the initial weight vectors can

be points on the unit circle, and the neighborhood function can be defined as

Nj(t, i) =

 1 if j ∈ T ,

0 if j /∈ T ,
(4.6)

where the set T is defined as T = {i − 1, i, i + 1} for i 6= 1, nm. For i = 1 and i = nm, we

choose T = {nm, 1, 2} and T = {nm − 1, nm, 1}, respectively.

On top of the above modifications, we enforce the condition that, when we have samples of

the positive limit set, the number of kernel centers or neurons nm should be strictly less than

qm, the number of samples in the set Ξn. When nm is equal to qm, the kernel centers can

converge to the samples. In the case where the positive limit set is a closed curve, this can

be interpreted as a solution to the traveling salesman problem. [51] To avoid convergence to

the samples, we impose the above dimensionality reduction condition.

Algorithm 3 shows the steps involved in implementing this method. We present the algorithm

for the case where the positive limit set is a closed curve. However, the algorithm can be

extended easily for other types of positive limit sets. The neighborhood function for this

case, defined by Equation 4.6, is inherently accounted in the algorithm.

Recall that in the case of CVT based method presented in the previous section, the samples

are contained in the positive limit set, which meant the trajectory was contained in the

positive limit set or converged to the set in finite time. Since we use the state measurement

for the Kohonen SOM based approach, we can relax some of the requirements of the CVT

based method. It is sufficient for the trajectory to converge to the positive limit set as

t→ ∞. However, it is important to choose βj(t) such that the state trajectory converges to

the positive limit set faster than the rate at which βj(t) → 0. If this is violated, the kernel
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centers will not converge to the positive limit set.

Algorithm 3: Kohonen SOM based Kernel Center Selection - Closed Curve

Case
Input: x(t), qm

Output: {pm,1(T ), . . . ,pm,nm(T )}

1 Choose the number of kernel centers nm such that nm < qm. If pm = 0, choose

a positive integer for nm.

2 Choose βj such that 0 ≤ βj(t) < 1 for t ∈ [0,∞) and βj(t) → 0 as t→ ∞ for

all j = 1, . . . , nm.

3 Initialize the weight vectors pm,j as the points on a circle contained inside the

closed curve.

4 Implement the Kohonen SOM algorithm for t ∈ [0, T ] for some T > 0.

(i) At time t, determine the winning neuron i that satisfies the condition

d(x(t)− pm,i(t)) ≤ d(x(t)− pm,j(t))

for j = {1, . . . , nm}.

(ii) Define the set T as T = {i− 1, i, i+ 1} for i 6= 1, nm. For i = 1 and i = nm,

choose T = {nm, 1, 2} and T = {nm − 1, nm, 1}, respectively.

(iii) Update the weight vectors based on

dpm,j(t)

dt
=

 βj(t) (x(t)− pm,j(t)) if j ∈ T

0 if j /∈ T

for j = 1, . . . , nm. This update happens until next state measurement. Go

back to Step 4 (i) after the update.
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Note, in the Lloyd’s algorithm, the distance between any two kernel centers is inherently

ensured to remain uniform by the algorithm. This can be attributed to the way partitions are

defined and the selection of the mass density function. On the other hand, the distribution

of the converged kernel centers from the Kohonen SOM based algorithm depends on the

distribution of the sampled measurements. If the state measurements are concentrated on

a particular neighborhood of the positive limit set, implementing Algorithm 3 will result in

the kernel centers being concentrated in or near the neighborhood.

4.5 Numerical Illustration of Center Selection Meth-

ods

We illustrate the effectiveness of the two approaches explained above for two examples in

this section. The first example is the undamped piezoelectric oscillator example considered

in Section 4.2.7. The positive limit set in this case is almost symmetric about the axis after

scaling of the states. The second example is a nonlinear oscillator which has a nonsymmetric

positive limit set. We implement the above discussed methods for both cases and use the re-

sulting kernel centers in the adaptive estimators. We use MATLAB lloydsAlgorithm function,

developed by Aaron T. Becker’s Robot Swarm Lab, for implementing Step 4 of Algorithm

2. The function expects the boundary of a polygon as input and hence we approximate

the region Qm using a polygon as shown in Figures 4.6 and 4.9. In the adaptive estimator

simulations, we use the Sobolev-Matern 3, 2 kernel given in Subsection 4.2.7.

4.5.1 Example 1: Nonlinear Piezoelectric Oscillator

The first example we consider is the undamped nonlinear piezoelectric oscillator whose mo-

tion is governed by the Equation 4.3. We use the same values for the structural parameters as



4.5. Numerical Illustration of Center Selection Methods 163

-0
.0

2
0

0.
02

-0
.0

3

-0
.0

2

-0
.0

10

0.
01

0.
02

0.
03

-0
.0

2
0

0.
02

-0
.0

3

-0
.0

2

-0
.0

10

0.
01

0.
02

0.
03

-0
.0

2
0

0.
02

-0
.0

3

-0
.0

2

-0
.0

10

0.
01

0.
02

0.
03

-0
.0

2
0

0.
02

-0
.0

3

-0
.0

2

-0
.0

10

0.
01

0.
02

0.
03

(a
)

A
lg

or
ith

m
2

ou
tp

ut

-0
.0

2
0

0.
02

-0
.0

3

-0
.0

2

-0
.0

10

0.
01

0.
02

0.
03

-0
.0

2
0

0.
02

-0
.0

3

-0
.0

2

-0
.0

10

0.
01

0.
02

0.
03

-0
.0

2
0

0.
02

-0
.0

3

-0
.0

2

-0
.0

10

0.
01

0.
02

0.
03

-0
.0

2
0

0.
02

-0
.0

3

-0
.0

2

-0
.0

10

0.
01

0.
02

0.
03

(b
)

A
lg

or
ith

m
3

ou
tp

ut

Fi
gu

re
4.
6:

A
lg
or
ith

m
ou

tp
ut
s
of

Ex
am

pl
e
4.
5.
1.

T
he

m
ar
ke
r
∗
an

d
th
e
bl
ue

lin
e
re
pr
es
en
t
th
e
ke
rn
el

ce
nt
er
s
an

d
th
e

lim
it
se
t,
re
sp
ec
tiv

el
y.



164
Chapter 4. Kernel Center Adaptation in the Reproducing Kernel Hilbert Space

Embedding Method

Figure 4.7: Kernel centers for Example 4.5.1 selected using Algorithm 2 - Pointwise error
|f(x)− f̂n(T,x)| obtained from adaptive estimator. The marker ∗ and the red line represent
the kernel centers and the limit set, respectively.

the ones used in the example in Section 4.2.7. We set the scaling factor S = 0.02 and initial-

ized the states at x0 = {x̃1(0), x2(0)}T = {0.03, 0}T . Figure 4.6 shows how the kernel centers

evolve while using Algorithms 2 and 3. We set the number of kernel centers as nm = 40 for

both of the algorithms. For implementing Algorithm 2, we first collect the set of samples

Ξm of the positive limit set ω+(x0). By connecting the samples in Ξm with straight lines,

we form a closed curve which is represented by the blue line in Figure 4.6a. We then scale

the closed curve by a factor of 1.1 and 0.9, thus forming concentric larger and smaller closed

curves. We chose the region between these two closed curves as Qm. Dividing the region

Qm as shown in Figure 4.6a results in a polygon, thus enabling us to use the lloydsAlgorithm

function in MATLAB. While implementing Algorithm 2, we chose βj(t) = 0.99 for t ≤ 1000

s and βj(t) = 0 for t > 1000 s for all j. As evident from Figure 4.6, the CVT based approach
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and the Kohonen SOM based approach take 1000 iterations and 100 seconds, respectively

to converge. It is clear that the kernel centers are more uniformly spaced than those picked

arbitrarily in the example in Subsection 4.2.7. We subsequently use the converged kernel

centers and simulate the adaptive estimator algorithm for T = 300 seconds. For the adaptive

estimator, we set l = 0.006, Γ = 0.001 and initialized the parameters at αi(t) = 0.0001 for

i = 1 . . . , nm. Figures 4.7 and 4.8 shows the pointwise error |f(x)− f̂(T,x)| obtained after

using the kernel centers from the CVT and Kohonen SOM based approach. As expected,

both the plots show that the error is O(10−4) over the positive limit set.

Figure 4.8: Kernel centers for Example 4.5.1 selected using Algorithm 3 - Pointwise error
|f(x)− f̂n(T,x)| obtained from adaptive estimator. The marker ∗ and the red line represent
the kernel centers and the limit set, respectively.
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4.5.2 Example 2: Nonlinear Oscillator

For the second example, we consider a nonlinear oscillator whose motion is governed by the

equation

ẋ1ẋ2
 =

 0 1

−1 0.5


︸ ︷︷ ︸

A

x1x2
+

0

1

︸ ︷︷ ︸
B

(
−x21x2

)︸ ︷︷ ︸
f(x(t))

. (4.7)

This system exhibits a more complex behavior than that in Example 4.5.1. Firstly, the state

trajectory is not contained in the positive limit set ω+(x0), which is depicted as the blue,

solid line in Figure 4.9. Note that the positive limit set is not symmetric. Refer Example

9.2.2 in [52] for a detailed analysis of the nonlinear behavior of the oscillator. Here, we

are interested in estimating the nonlinear function f(x(t)) = −x21x2. Figure 4.9 shows the

implementation of the CVT based and Kohonen SOM based kernel center selection methods

for this problem. In both cases, we fixed number of kernel center as nm = 40 and initialized

the states at x0 = {x1(0), x2(0)}T = {0, 2}T . The polygon in Figure 4.9a for the CVT based

approach is built similar to the method used for Example 4.5.1. For the Kohonen SOM

approach, we set βj(t) = 0.99 for t ≤ 1000 s and βj(t) = 0 for t > 1000 s for all j. As

evident from the figures, the CVT and Kohonen SOM methods take 600 iterations and 200

seconds, respectively for convergence of the kernel centers. It is clear that the kernel centers

from the CVT based algorithm are more uniformly placed that the output of the Kohonen

SOM algorithm. This can be attributed to the fact the state measurement samples are not

uniformly distributed and to the fact that the CVT method makes strong assumptions about

the structure of Qm. Since the distribution of the state measurement affect the results of the

Kohonen SOM based approach, the kernel centers are not uniform in this case. However,

when the kernel centers from these algorithms are implemented in the adaptive estimator,
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Embedding Method

we obtain convergence on the positive limit set. Figures 4.10 and 4.11 shows the pointwise

error |f(x)− f̂(T,x)| after implementing the adaptive estimator for T = 300 seconds using

the kernel centers from the CVT and Kohonen SOM based kernel center selection approach,

respectively. We set l = 0.5, Γ = 0.001 and initialized the parameters at αi(t) = 0.0001 for

i = 1 . . . , nm. As in Example 4.5.1, the error is the smallest over the positive limit set.

Figure 4.10: Kernel centers for Example 4.5.2 selected using Algorithm 2 - Pointwise error
|f(x)− f̂n(T,x)| obtained from adaptive estimator. The marker ∗ and the red line represent
the kernel centers and the limit set, respectively.

4.6 Conclusion

In this chapter, we developed criteria for kernel center selection based on the theory of

infinite-dimensional adaptive estimation in reproducing kernel Hilbert spaces. We introduced

two methods that use this criteria for kernel center selection. These methods provide a simple

way to choose kernel centers for a specific class of nonlinear systems - systems in which state
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Figure 4.11: Kernel centers for Example 4.5.2 selected using Algorithm 3 - Pointwise error
|f(x)− f̂n(T,x)| obtained from adaptive estimator. The marker ∗ and the red line represent
the kernel centers and the limit set, respectively.

trajectory regularly visits the neighborhoods of the positive limit set. We illustrated the

effectiveness of both algorithms using practical examples. The approaches discussed in this

chapter assume a fixed number of kernel centers. It would be of great interest to develop

techniques that iteratively add kernel centers in real-time while accounting for the persistence

of excitation and fill-distance conditions.
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Chapter 5

Sufficient Conditions for Parameter

Convergence over Embedded

Manifolds using Kernel Techniques

Abstract

The persistence of excitation (PE) condition is sufficient to ensure parameter convergence

in adaptive estimation problems. Recent results on adaptive estimation in reproducing kernel

Hilbert spaces (RKHS) introduce PE conditions for RKHS. This chapter presents sufficient

conditions for PE for the particular class of uniformly embedded reproducing kernel Hilbert

spaces (RKHS) defined over smooth Riemannian manifolds. This chapter also studies the

implications of the sufficient condition in both finite and infinite-dimensional cases. When

the RKHS is finite-dimensional, the sufficient condition implies parameter convergence as in

the conventional analysis. On the other hand, when the RKHS is infinite-dimensional, the

same condition implies that the function estimate error is ultimately bounded by a constant

that depends on the approximation error of the infinite-dimensional RKHS. We illustrate the

effectiveness of the sufficient condition in a practical example.

178
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5.1 Introduction

Adaptive estimation of unknown nonlinearities arising in finite-dimensional autonomous dy-

namical systems is now a classical, or textbook, problem. [1, 2, 3] Typically, in such estima-

tion problems, we assume that the unknown function is a linear combination of known basis

functions, commonly referred to as regressors. We can guarantee parameter convergence

in adaptive estimation problems by assuming that additional sufficient conditions on the

regressors hold. In control theory parlance, we refer to these hypotheses as persistence of

excitation (PE) conditions. It is important to observe that the definition of PE can vary

depending on the type of problem or the algorithm implemented.

5.1.1 PE Conditions and Convergence

Some of the earliest accounts of PE conditions and their implications for parameter con-

vergence in adaptive estimation are given in [4, 5]. In these studies, the authors pose the

problem of parameter estimation as the stability analysis of a linear time-varying (LTV),

finite-dimensional system and show that the LTV systems are asymptotically stable when

the PE condition holds. In some cases, we can even guarantee exponential stability. [6, 7]

When only a subspace is persistently excited, it is possible to show that the parameter error

eventually becomes orthogonal to that subspace. [6] In other words, the estimates converge

to the projection of the unknown function onto the subspace.

In [8, 9, 10, 11, 12], the authors generalize some of the existing notions of PE and extend

the theory on the stability of LTV systems. The work by Farrell illustrates the effectiveness

of local PE conditions for parameter convergence. [13] The PE condition in [14] ensures the

convergence of parameter estimates of systems defined by the interconnection of LTI blocks

and nonlinear functions. Yuan and Wang relate the learning speeds and constants that ap-
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pear in the PE definition in [15]. In [16], Nikitin proposes a generalized PE definition that

relaxes some of the conditions imposed on conventional PE conditions. An account of pa-

rameter estimation for distributed parameter systems and the corresponding notion of PE is

given in [17, 18, 19, 20, 21, 22]. Recent articles on adaptive estimation in reproducing kernel

Hilbert spaces (RKHS) extend the notion of partial PE to cases where the unknown func-

tion appearing in ordinary differential equations (ODEs) belongs to an infinite-dimensional

RKHS. [23, 24, 25]

The PE condition is difficult, and sometimes impossible, to verify a priori in practical

applications. To overcome this limitation, authors have studied simpler sufficient conditions

that ensure PE. A few of the earliest accounts that analyze sufficient conditions for PE are

[26, 27]. In these papers, the authors link the richness of the reference trajectory to the PE

condition. This richness condition is much more intuitive than the PE condition. Kurdila et

al. illustrate in [28, 29] that, in function spaces generated by radial basis functions, radial

basis functions centered at points in state space that are visited regularly are persistently

excited. The work by Gorinevsky and Lu et al., in which it is shown that inputs belonging

to neighborhoods of radial basis function centers are PE, illustrates a similar result. [30, 31]

In [32, 33], Wang et al. relax some of the hypotheses in [28, 29]. They derive a sufficient

condition for PE for any recurrent trajectory contained in a regular lattice. In [34], Bamieh

and Giarre pose a linear parameter varying identification problem as linear regression, which

allows them to show that in some instances, the PE condition simplifies to an interpolation

condition.

An alternative to developing sufficient conditions that ensure PE is to develop methods that

ensure parameter convergence without PE. For example, Adetola and Guay prove in [35] that

we can compute the unknown parameters once the regressor matrix becomes positive definite.

The recent class of estimation techniques, referred to as concurrent learning, obviates the
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need for persistently exciting signals by using a rich collection of recorded data. [36, 37, 38]

Song et al. show asymptotic constancy of parameter estimates without the PE condition in

[39]. In [40], Wang et al. propose a finite-time parameter estimation technique that uses the

dynamic regressor extension and mixing methods to transform the estimation problem into

a series of regression models. This transformation results in parameter convergence under

non-PE conditions.

In most of the studies mentioned above, the states and the parameters evolve in Euclidean

spaces (a notable exception being the family of related papers [17, 18, 19, 20, 21, 22], which

treat distributed parameter systems). However, for a given initial condition in many such

finite-dimensional systems, the state trajectory traverses only a subdomain of Euclidean

space. Recent articles on adaptive estimation in RKHS provide a framework for adaptive

estimation of dynamic systems whose states evolve in more generic spaces, including embed-

ded manifolds. [23, 41] The corresponding PE conditions are given in [24, 25]. Guo et al.

study the rate of convergence of the finite-dimensional approximations of reproducing ker-

nel Hilbert spaces defined over manifolds in [42]. From an adaptive estimation perspective,

this is equivalent to studying the rate at which the finite-dimensional function estimate f̂n

converges to the infinite-dimensional function estimate f̂ . However, to carryout the analysis

in these studies, it is necessary to choose the RKHS that is persistently excited.

This requirement, in turn, suggests a need for sufficient conditions for PE that works in

spaces that are more general than Euclidean spaces. In this chapter, we introduce a sufficient

condition for PE of RKHS defined over embedded manifolds and study its implications in

both finite and infinite-dimensional cases. In the typical situation in which the analysis in

this chapter is applied, we assume that we are given an ODE (such as in the model problem

Equation 5.1), and that the system admits an invariant submanifold M that is regularly

embedded in the state space Rd for some given initial condition. The sufficient condition is
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also applicable when, given an initial condition, the forward orbit is a subset of an invariant

manifold and/or the embedded manifold is Euclidean space itself.

5.1.2 Summary of New Results

This chapter extends the results in the recent papers [23, 24, 25, 41, 42] in several fundamental

ways. The first result states sufficient conditions that guarantee the PE condition for finite-

dimensional RKHS over a manifold M that is defined in terms of a finite number of kernel

basis functions. While this was carried out in [29] for radial basis functions over Rn, here we

treat the case where the native space is defined over a smooth manifold and the RKHS is

generated by a continuous strictly positive definite kernel. As in [29], we see that the RKHS is

PE if the trajectory repeatedly visits any (geodesic) neighborhoods of the kernel basis centers,

and the time of visitation is bounded below in some sense. This result has direct applicability

to finite-dimensional cases of the RKHS embedding methods discussed in [23, 24, 25, 41, 42].

It serves as a foundation for practical choices of PE subsets and spaces, which is not addressed

in these references. The second principal result of this chapter is the study of the implications

of the above sufficient condition when the RKHS is infinite-dimensional. We show that when

the sufficient condition described above is valid, the function (parameter) error is eventually

bounded above by a constant, which depends on the finite-dimensional approximation error

of the infinite-dimensional RKHS. Researchers have investigated such cases for parameter

estimation in Euclidean spaces using dead-zone gradient algorithm. [3, 43] The result in this

chapter can be considered as a generalization of this approach to reproducing kernel Hilbert

spaces of functions defined over manifolds.

The organization of this chapter is as follows. Section 5.2 reviews background material for

the new results in Sections 5.3 and 5.4. It covers the theory of adaptive estimation in repro-

ducing kernel Hilbert spaces and introduces two recent, different notions of the persistence
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of excitation. We discuss when the two notions of PE are equivalent and when we can ensure

parameter convergence. In Section 5.3, we derive one of the primary results of this chapter,

a sufficient condition for PE in the finite-dimensional case. We show that this sufficient con-

dition ensures convergence of parameters when the unknown function belongs to a known

finite-dimensional space. In Section 5.4, we discuss the implications of this sufficient condi-

tion when we only know that the unknown function belongs to an infinite-dimensional space.

We show that the projection (onto the persistently excited finite-dimensional subspace) of

the function estimate error is bounded by a constant times the error of best approxima-

tion. Section 5.5 illustrates the theory using a numerical example. Section 5.6 concludes the

chapter.

5.2 Review of Adaptive Estimation in RKHS

5.2.1 The Theory of RKHS

A reproducing kernel Hilbert space HX is a Hilbert space of functions defined on the set

X and that can be defined in terms of an associated continuous, positive-definite kernel

K : X ×X → R. In this chapter, we assume that the kernel is strictly positive-definite. For

each x ∈ X, the kernel basis centered at x, denoted K(x, ·), is a function in HX . Suppose

(·, ·)HX
is the inner product associated with the space HX . The reproducing property of the

RKHS states that for any x ∈ X and f ∈ HX , (K(x, ·), f)HX
= Exf = f(x). The operator

Ex is the evaluation functional. In the context of this chapter, we assume that the evaluation

operator is uniformly bounded, that is |Exf | ≤ c‖f‖HX
for all x ∈ X and f ∈ HX and some

fixed positive constant c. One sufficient condition for the uniform boundedness of all the

evaluation functionals is that there exists a constant k̄ such that K(x,x) ≤ k̄2 < ∞ for

all x ∈ X. This condition implies that the RKHS is continuously embedded in the space
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of continuous functions C(X) defined on X, that is, given any function f ∈ HX , we have

‖f‖C(X) ≤ c‖f‖HX
for some constant c. Given a positive definite kernel K : X ×X → R, we

generate the associated RKHS by

HX := span{K(x, ·)|x ∈ X},

where the inner product satisfies 〈K(x, ·),K(y, ·)〉HX
= K(x,y). For any set M ⊆ X, the

associated RKHS HΩ ⊆ HX is defined as

HΩ := span{K(x, ·)|x ∈M ⊆ X}.

Additionally, if Ωn is a discrete finite set of n elements in X, the associated RKHS is an

n-dimensional space. In this chapter, we use a subscript, as in Ωn, to describe the number

of elements in a discrete finite set. In addition to the above spaces, we are also interested in

the space of restrictions RM(HX), where M ⊆ X. We define the space RM(HX) by

RM(HX) := {g :M → R | g = RMf := f |M ∀ f ∈ HX}.

The functions in RM(HX) are defined only on M ⊆ X, but those in HX are defined every-

where in X. When M = X, the space RM(HX) is nothing but the space HX . The restricted

space RM(HX) is itself an RKHS, [44, 45] and the associated reproducing kernel is given by

R(x,y) = K|M(x,y) = K(x,y)

for all x,y ∈M . The kernel R generates the space RM(HX) just as the kernel K generates

HX .
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In this chapter, the set X represents the state space Rd of the plant, and the set M is taken

to be a smooth, Riemmanian, k-dimensional manifold that is regularly embedded in the

state space X. The sets Ω and Ωn are used to represent persistently excited subsets of X.

The reproducing property mentioned above endows the RKHS HX with many interesting

properties which makes proving theorems easier. A detailed description of these properties

is given in [44, 45, 46]. We describe the properties as and when we use them in this chapter.

5.2.2 RKHS Embedding for Adaptive Estimation

In this subsection and the next, we discuss several recent results that are critical to the new

results derived in Sections 5.3 and 5.4. Interested readers are referred to [23, 24, 25] for

more detailed discussions. Suppose we have a nonlinear system governed by the ordinary

differential equation

ẋ(t) = Ax(t) +Bf(x(t)), (5.1)

where x(t) ∈ X := Rd, A ∈ Rd×d is known and Hurwitz, B ∈ Rd is known and f : Rd → R

is the unknown (nonlinear) function, which is assumed to be an element of the RKHS HX .

We also assume that we measure all the states x(t) of the system at each time t ≥ 0. We

define an estimator model of the form

˙̂x(t) = Ax̂(t) +Bf̂(t,x(t)), (5.2)

where x̂(t) ∈ Rd is the state estimate and f̂(t,x(t)) is the function estimate, which at each

time t is an element of the RKHS HX . Our goal is to ensure that the function estimate f̂(t)
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approaches the true function f as t→ ∞. We use the gradient law, which is given by

˙̂
f(t) = Γ−1(BEx(t))∗P (x(t)− x̂(t)), (5.3)

to define the rate of change of the function estimate. In the above equation, the term Γ ∈ R

and the notation L∗ represents the adjoint of the linear operator L. The matrix P is the

symmetric positive definite solution of the Lyapunov’s equation ATP + PA = −Q, where

Q ∈ Rd×d is an arbitrary symmetric positive-definite matrix.

It is now possible to write down the error equations, which have the form


˙̃x(t)

˙̃f(t)

 =

 A BEx(t)

−Γ−1(BEx(t))∗P 0


x̃(t)

f̃(t)

 . (5.4)

In the above equation, the terms x̃(t) := x(t)− x̂(t) and f̃(t, ·) := f(·)− f̂(t, ·) represent the

state and function error, respectively. The error systems, governed by the above equations,

evolves in the infinite-dimensional space Rd×HX . Lyapunov analysis and Barbalat’s lemma

can be used to show that the state error x̃(t) converges to zero. [24, 25] However, we cannot

make any claims about the function error f̃ without additional assumptions.

5.2.3 Persistence of Excitation

As in the study of finite dimensional systems in [1, 2, 3], persistence of excitation conditions

introduced in [24, 25] for RKHS embedding are sufficient to prove convergence of the function

error f̃(t) → 0. We discuss two notions of PE conditions.

Definition 5.1. (PE HX-1) The trajectory x : t 7→ x(t) ∈ Rd persistently excites the

indexing set Ω and the RKHS HΩ provided there exist positive constants T1, γ1, δ1, and ∆1,
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such that for each t ≥ T1 and any g ∈ HX , there exists s ∈ [t, t+∆1] such that

∣∣∣∣∫ s+δ1

s

Ex(τ)gdτ
∣∣∣∣ ≥ γ1‖PΩg‖HX

> 0.

Definition 5.2. (PE HX-2) The trajectory x : t 7→ x(t) ∈ Rd persistently excites the

indexing set Ω and the RKHS HΩ provided there exists positive constants T2, γ2, and ∆2

such that

∫ t+∆2

t

〈
E∗
x(τ)Ex(τ)g, g

〉
HX

dτ ≥ γ2‖PΩg‖2HX
> 0

for all t ≥ T2 and any g ∈ HX .

The space HX in the notation “PE HX-1” and “PE HX-2” refers to the space in which

the functions g are contained. The operator PΩ is the HX-orthogonal projection from the

space HX onto the closed subspace HΩ. The following theorem shows that the function error

converges over the PE set when the PE condition in Definition 5.1 holds.

Theorem 5.3. If the trajectory x : t 7→ x(t) persistently excites the RKHS HΩ in the sense

of Definition PE HX− 5.1. Then

lim
t→∞

‖x̃(t)‖ = 0, lim
t→∞

‖PΩf̃(t)‖HX
= 0.

In the above theorem, we can additionally show that if limt→∞ ‖PΩf̃(t)‖HX
= 0, then

limt→∞ |f(x) − f̂(t,x)| = 0 for all x ∈ Ω. In fact, the convergence is uniform over the

set Ω since we assume that the evaluation functional is uniformly bounded.

Before proceeding further, let us note how the above definitions and theorem simplify when
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the actual unknown function f ∈ HΩn . In such cases, we can assume that the function f̂

in the adaptive estimator equation and the functions g in Definitions 5.1 and 5.2 are in the

space HΩn and revise the definitions of PE conditions to PE HΩn-1 and PE HΩn-2. Since the

trajectory x : t 7→ x(t) ∈ Rd persistently excites the space HΩn and all the functions are in

HΩn , the error equations can be recast in Rd ×HΩn , and the projection operator PΩ ≡ PΩn

disappears. On the other hand, when the evolution of the state trajectory is on a manifold

M , we can treat the above problem solely as estimation of functions over the manifold M .

In such cases, the persistently excited set Ω is a subset of the manifold and we replace the

space HX and HΩn with RM(HX) and RM(HΩn), respectively, in the above theorems and

definitions.

5.2.4 Equivalence of PE conditions

In the previous subsection, we discussed two different notions of PE. PE HX-1 always implies

PE HX-2.

Theorem 5.4. The PE condition in Definition 5.1 implies the one in Definition 5.2.

The proof of the above theorem is given in [24, 25]. Now, note that the hypotheses of

Theorem 5.3 assumes that the PE condition in Definition 5.1 holds. On the other hand, the

sufficient condition, given in next section, implies that the PE condition in Definition 5.2

holds. In particular, it implies that PE HΩn - 1 holds, where HΩn is a finite-dimensional

RKHS. Thus, it is important to understand when the PE condition in Definition 5.2 implies

the PE condition in Definition 5.1. The following theorem from [24, 25] explicitly states

when the two notions of PE are equal.

Theorem 5.5. If the family of functions defined by U(S̄n) = {g(x(·)) : t 7→ g(x(t))|g ∈

S̄n := HΩn such that ‖g‖HΩn
= 1} is uniformly equicontinuous, then the PE HΩn - 5.2
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implies PE HΩn - 5.1.

The proof of a more general case of the above theorem is given in [24]. It is important

to understand the family of functions U(S̄n) are equicontinuous. A sufficient condition

for this is that the unit ball S̄n = {g : X 7→ R ∈ HΩn such that ‖g‖ = 1} is uniformly

equicontinuous and the state trajectory t 7→ x(t) is uniformly continuous. If the state

trajectory t 7→ x(t) maps to a compact set V , then U(S̄n) is uniformly equicontinuous if

S̄n redefined as S̄n = {g : V 7→ R ∈ HΩn such that ‖g‖ = 1} is uniformly equicontinuous

and the state trajectory t 7→ x(t) is uniformly continuous. We know that S̄V,n is uniformly

equicontinuous. Thus, if the state trajectory t 7→ x(t) is uniformly continuous and maps to

a compact set, the family of functions U(S̄n) is uniformly equicontinuous.

5.3 Sufficient Condition for PE

In this section, we derive the sufficient condition for persistence of excitation of the trajectory

x : t 7→ x(t) in the sense of the PE HΩn - 5.2. We assume that the states evolves in a smooth,

compact, Riemmanian k-dimensional manifold that is regularly embedded in X and endowed

with the (Riemmanian) distance function dM(·, ·) :M ×M → R+∪{0}. Note, by definition,

dM(x,y) is equal to the infimum of the lengths of all the smooth curves joining x ∈M and

y ∈M . The sufficient condition is valid for the case when f ∈ RM(HΩn) ⊆ RM(HX), where

Ωn = {x1, . . . ,xn} is a discrete finite set in M . We analyze the implications of relaxing

this condition in the next section. In the following analysis, we assume that the kernel

R : M ×M → R is a continuous, strictly positive-definite kernel. Many kernels are strictly

positive definite (Matern/Sobolev, exponential, multiquadric).
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Lemma 5.6. Suppose yi ∈M for i = 1, . . . , n. If

S(y1, . . . ,yn) :=


R(x1,y1) . . . R(xn,y1)

... . . . ...

R(x1,yn) . . . R(xn,yn)

 , (5.5)

then there exists an ε > 0 and a number θ(ε,x1, . . . ,xn) > 0 such that

‖Sα‖ ≥ θ‖α‖

for all α ∈ Rn and for every collection of yi’s that satisfy dM(xi,yi) ≤ ε for i = 1, . . . , n.

Proof. The proof of this lemma follows easily by modifications of the arguments in [29] (which

holds for radial basis functions in Rn) to the case when the basis function is a continuous,

strictly positive-definite kernel basis function defined on a manifold. We note that the eigen-

values of the matrix STS vary continuously with yi for i = 1, . . . , n, since the eigenvalues

are continuous functions of the elements of a matrix and the map y → R(x,y) is continuous

by hypothesis. Let λ(y1, . . . ,yn) be the smallest eigenvalue of S(y1, . . . ,yn)
TS(y1, . . . ,yn).

Since the kernel is strictly positive definite, the smallest eigenvalue of S(x1, . . . ,xn)
TS(x1, . . . ,xn)

satisfies λ(x1, . . . ,xn) > 0. By continuity of eigenvalues, we choose an ε > 0 such that

λ(y1, . . . ,yn) >
1

2
λ(x1, . . . ,xn) > 0

whenever dM(xi,yi) ≤ ε for i = 1 . . . , n. (It is easy to see that such a choice is always

possible. Since y 7→ λ(y) is continuous at x, for any γ > 0, there is an ε > 0 such that if

dM(x, y) < ε, then |λ(y) − λ(x)| < γ. Choose γ := 1
2
λ(x), and pick an appropriate ε > 0.

Then the smallest that λ(y) can be is greater than 1
2
λ(x). So, λ(y) ≥ 1

2
λ(x) > 0.) With this
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choice of ε, finally set θ =
√

1
2
λ(x1, . . . ,xn). We have

‖S(y1, . . . ,yn)α‖2 ≥ λ(y1, . . . ,yn)α
Tα > θ2‖α‖2.

For proving the next theorem, we enforce the following additional condition on ε in the

previous lemma. Note, if a particular ε > 0 works in the above lemma, any smaller positive

value will satisfy the lemma.

Condition 5.7. Let xi,xj ∈ Ωn for i, j = 1, . . . , n. The choice of ε in Lemma 5.6 also

satisfies

0 < ε <
1

2
min
i ̸=j

dM(xi,xj).

Lemma 5.8. Let I be a bounded, Lebesgue (µ) measurable subset of [0,∞), and also let

Ii := {s ∈ I|dM(xi,x(t)) ≤ ε for i = 1, . . . , n},

where ε is as in Lemma 5.6 and satisfies Condition 5.7. If µ(Ii) ≥ τ0 for 1, . . . , n, then with

θ as in Lemma 5.6,

∫
I

(
E∗
x(τ)Ex(τ)g, g

)
RM (HX)

dτ ≥ τ0θ
2‖α‖2

holds for any g ∈ RM(HX) and α = {α1, . . . , αn} such that g =
∑n

i=1 αiR(xi, ·).
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Proof. First, we note that

〈
E∗
x(τ)Ex(τ)g, g

〉
RM (HX)

=
〈
Ex(τ)g, Ex(τ)g

〉
R
= (g(x(τ)))2 .

Moreover, the sets Ii are disjoint since the closed balls defined asBϵ(xi) := {y ∈M |dM(xi,y) ≤

ε} centered at xi and radius ε do not intersect with each other when ε satisfies Condition

5.7. Furthermore, since ∪n
i=1Ii ⊆ I, we have

∫
I

〈
E∗
x(τ)Ex(τ)g, g

〉
RM (HX)

dτ ≥
n∑

i=1

∫
Ii

(g(x(τ)))2 dτ. (5.6)

The closed balls Bϵ(xi) are compact since the manifold M is compact. Thus, the function

g ∈ RM(HX) ⊆ C(M) attains its maximum and minimum at points in the manifold M , say

yi,yi
∈M , respectively. Thus, for each i = 1, . . . , n, we get the inequality

(
g(y

i
)
)2
µ(Ii) ≤

∫
Ii

(g(x(τ)))2 dτ ≤ (g(yi))
2 µ(Ii).

By definition of dM , we know that the closed ball Bϵ(xi) is connected. Using the generalized

intermediate value theorem and the hypothesis that µ(Ii) ≥ τ0, we conclude that there exists

a yi ∈ Bϵ(xi) such that

∫
Ii

(g(x(τ)))2 dτ = (g(yi))
2 µ(Ii) ≥ (g(yi))

2 τ0

for i = 1, . . . , n. From the Inequality 5.6, we have

∫
I

〈
E∗
x(τ)Ex(τ)g, g

〉
RM (HX)

dτ ≥
n∑

i=1

(
n∑

j=1

αjR(xj,yi)

)2

τ0 = ‖Sα‖2τ0,

where S = S(y1, . . . ,yn) is defined as in Equation 5.5. Since we choose ε as in Lemma 5.6,
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using the lemma gives us the desired result.

The above lemma plays a direct role in the proof of the sufficient conditions for PE given

below.

Theorem 5.9. Suppose that the manifold M is positive invariant under the state trajectory

t 7→ x(t) and Ωn := {x1, . . . ,xn}. Also suppose that the constant ε is chosen as in Lemma

5.6 and satisfies Condition 5.7. For every t ≥ 0 and every ∆2 > 0, define

Ii := {s ∈ [t, t+∆2]|dM(xi,x(t)) ≤ ε for i = 1, . . . , n}.

If there exists a T2 ≥ 0 and ∆2 > 0 such that for all t ≥ T2, µ(Ii) is bounded below by a

positive constant τ0 > 0 for all i = 1, . . . , n and t, then the trajectory x : t→ x(t) persistently

excites the indexing set Ωn and the RKHS RM(HΩn) in the sense of PE RM(HΩn) - 5.2.

Proof. For a given t ≥ T2, we define I := [t, t + ∆2]. Since µ(Ii) ≥ τ0 for i = 1, . . . , n, we

apply Lemma 5.8 to get

∫ t+∆2

t

〈
E∗
x(τ)Ex(τ)g, g

〉
RM (HX)

dτ ≥ τ0θ
2‖α‖2.

We note that the constant τ0 is independent of t. Thus, the above inequality is valid for all

t ≥ T2. Given g =
∑n

i=1 αiR(xi, ·) ∈ RM(HX), its norm is given by

‖g‖2RM (HX) =

〈
n∑

i=1

αiR(xi, ·),
n∑

i=1

αiR(xi, ·)

〉
RM (HX)

= αTS(x1, . . . ,xn)α,

where S(x1, . . . ,xn) is defined as in Equation 5.5 and is called the Grammian matrix. It is
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straightforward to see that the norm in S(x1, . . . ,xn) is equivalent to the norm in Rn since

λ‖α‖2 ≤ ‖g‖2RM (HX) ≤ λ‖α‖2,

where λ and λ are the minimum and maximum eigenvalues of the Grammian matrix S(x1, . . . ,xn).

Note that the Grammian matrix is a symmetric positive definite matrix, and hence all eigen-

values are real and positive. Using the above equivalence of norms, we get

∫ t+∆2

t

〈
E∗
x(τ)Ex(τ)g, g

〉
RM (HX)

dτ ≥ γ2‖g‖2RM (HX),

where γ2 = τ0θ2

λ
.

Theorem 5.9 states that after a finite amount of time T2, if there exists a constant ∆2 such

that in any time window [t, t+∆2] ⊆ [T2,∞), the state trajectory stays in the neighborhood

of each of the centers x1, . . . ,xn for at least a finite amount of time τ0, then the state

trajectory is persistently exciting in the sense of PE defined in the theorem. The example

in Section 5.5 gives an intuitive illustration of the sufficient condition.

Corollary 5.10. If the hypothesis of Theorem 5.9 holds and the family of functions U(S̄n),

as defined in Subsection 5.2.4, are uniformly equicontinuous, then the trajectory x : t→ x(t)

persistently excites the indexing set Ωn and the RKHS RM(HΩn) in the sense of PE RM(HΩn)

- 5.1.

Furthermore, if the unknown nonlinear function f ∈ RM(HΩn), then

lim
t→∞

‖x̃(t)‖ = 0,

lim
t→∞

‖f̃(t)‖RM (HΩn )
= 0.
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The proof of the above corollary follows directly from Theorem 5.9 and the discussion in

Subsections 5.2.3 and 5.2.4.

5.4 Implications of the Sufficient Condition in Infinite

Dimensions

In the previous section, we considered the case where the unknown nonlinear function f is in

the finite-dimensional space RM(HΩn). In this section, we consider the case where it is only

known that f ∈ RM(HX). Since functions in RM(HX) are defined only on the manifold M ,

we need the state trajectory x(t) to be contained in M for the governing equations to make

sense. The implication of this change in hypotheses is that the function estimate error is

ultimately bounded above by a constant which depends on the norm of the complementary

projection.

In the following analysis, we use the subscript n to denote the terms associated with the

finite-dimensional space RM(HΩn). Let PΩn be the projection operator from RM(HX)

onto RM(HΩn). The projection operator decomposes the space RM(HX) into RM(HX) =

RM(HΩn)
⊕

RM(VΩn). Note that space RM(VΩn) contains functions that are orthogonal to

the functions in RM(HΩn). Using the reproducing property, it is easy to show that func-

tions in RM(VΩn) vanish identically on the set Ωn, i.e., for all v ∈ RM(VΩn), and x ∈ Ωn,

v(x) = 0. With this definition, we rewrite the plant equation given in Equation 5.1, in which

f ∈ RM(HX), in the form

ẋ(t) = Ax(t) +Bfn(x(t)) +Bvn(x(t)),

where x(t) ∈M , fn = PΩnf ∈ RM(HΩn), vn ∈ RM(VΩn) and f = fn + vn.
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For practical applications, we want estimates that are finite-dimensional. We replace the

infinite-dimensional estimate f̂ in Equation 5.2 with the finite-dimensional estimate f̂n :=

f̂n(t, ·) ∈ RM(HΩn). The estimator equation has the form

˙̂x(t) = Ax̂(t) +Bf̂n(t,x(t)), (5.7)

where x̂(t) ∈ Rd is the finite-dimensional state estimate. We use the dead-zone gradient

learning law

˙̂
fn(t) = Γ−1(BEx(t)PΩn)

∗x̃D(t), (5.8)

where

x̃D(t) = x̃(t)− Φσ(x̃(t)).

In the above equation, Φ =
∥B∥∥vn∥C(U)

λA
, and the other terms are defined as in Equation 5.3.

The saturation function σ : Rd → Rd is defined as

σi(x) =


xi

Φ
if
∣∣xi

Φ

∣∣ ≤ 1,

1 if
∣∣xi

Φ

∣∣ > 1

for i = 1, . . . , d and σ(x) = {σ1(x), . . . , σd(x)}T . Using the reproducing property, we can

show that Equation 5.8 is equivalent to

˙̂α(t) = S(x1, . . . ,xn)
−1Γ−1R(xc,x(t))B

T x̃D(t), (5.9)

where R(xc,x(t)) := {R(x1,x(t)), . . . ,R(xn,x(t))}T , S(x1, . . . ,xn) is defined as in Equa-

tion 5.5, and Γ := ΓIn is the gain matrix. [47] The term α̂(t) := {α1(t), . . . , αn(t)}T in the
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above equation is the unknown parameter that satisfies f̂n =
∑n

i=1 αiR(xi, ·). The error

equations are then


˙̃x(t)

˙̃f(t)

 =

 Ax̃(t) +BEx(t)f̃(t)

−Γ−1(BEx(t)PΩn)
∗x̃D(t)

 (5.10)

where x̃(t) := x(t)− x̂(t) and f̃(t) := f− f̂n(t). If we define f̃n(t) := PΩnf− f̂n = fn− f̂n(t),

we get f̃(t) := f̃n(t) + vn. Since the function vn is a constant, we have ˙̃f(t) = ˙̃fn(t).

The following theorem shows us that the sufficient condition given in Theorem 5.9 implies

boundedness of the error by a constant proportional to ‖(I − PΩn)f‖C(U), where U is a

compact set in which the states are contained after a finite amount of time. The proof of the

theorem is similar to that of Theorem 5.3. In the context of this theorem, we assume that

the state trajectory t 7→ x(t) is bounded and uniformly continuous. Generally speaking, we

use both these assumptions in the proof of Theorem 5.9.

Theorem 5.11. Suppose that the state trajectory x(t) ∈M , the function f ∈ RM(HX), and

the class of functions U(S̄n) defined in Subsection 5.2.4 is uniformly equicontinuous. Also

suppose that the constant ε is chosen as in Lemma 5.6 and satisfies Condition 5.7. If the

sufficient condition given by Theorem 5.9 holds, and the evolution of f̂n(t) is governed by

Equation 5.8, then

lim sup
t→∞

‖x̃(t)‖ ≤ ĉ‖vn‖C(U), lim sup
t→∞

‖f̃n(t)‖ ≤ č‖vn‖C(U),

where ĉ := ĉ(n) and č := č(n) are constants and ‖vn‖C(U) denotes the uniform norm of the

function vn over the set U = {x(τ)|τ ≥ T1} with T1 is defined as in PE RM(HΩn)-5.1.

Proof. Since the hypotheses of Corollary 5.10 holds, the state trajectory is persistently ex-
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citing in the sense that there exist constants T1, γ1, δ1 and ∆1 such that the PE condition

given in the corollary holds. Consider the Lyapunov function

V (t) = 〈x̃D(t), x̃D(t)〉+
〈
f̃n(t),Γf̃n(t)

〉
RM (HX)

.

The time derivative of the Lyapunov equation is

V̇ (t) =

〈
x̃D(t),

(
I − Φ

∂σ

∂x
(x̃(t))

)
˙̃x(t)

〉
+
〈
f̃n(t),

˙̃fn(t)
〉

= −λA‖x̃D(t)‖2 − λAΦ‖x̃D(t)‖1 + x̃D(t)
TBvn(x(t)).

In deriving the above equation, we assume that the matrix A has the form A = −λAI,

where λA > 0. (There is not loss of generality in this assumption. If A does not satisfy

this assumption, we can modify the estimator in Equation 5.7 by replacing the term Ax̂(t)

with Ax(t) and adding the term λAIx̃(t). Then the error equations have the same form

as in Equation 5.10 and the analysis proceeds without change.) Since Φ =
∥B∥∥vn∥C(U)

λA
, we

conclude that

V̇ (t) ≤ −λA‖x̃D(t)‖2.

Thus, we conclude that x̃D(t), x̃(t) are bounded and the family of functions {f̃n(t)}t≥0 is

uniformly bounded.

Next note that ˙̃x(t) is bounded. This is evident from the equality

‖ ˙̃x‖ ≤ ‖A‖‖x̃(t)‖+ ‖B‖‖Ex(t)‖
(
‖f̃n(t)‖+ ‖vn‖

)
.

Thus, x̃(t) is Lipschitz continuous in t, which implies that the same is uniformly continuous
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in t. This in turn implies that x̃D(t) is uniformly continuous in t. Next, notice that the

function vn is bounded and uniformly continuous on the set U , since vn is continuous and U is

compact. Furthermore, recall that the state trajectory is bounded and uniformly continuous

in t. Thus, V̇ (t) is uniformly continuous in t.

Since V (t) is monotonically decreasing and bounded below, we have

lim
t→∞

∫ t

t0

V̇ (t)dτ = lim
t→∞

V (t)− V (t0) <∞.

Using Barbalat’s lemma for V̇ , we get

lim
t→∞

‖x̃D(t)‖ = 0,

which implies

lim sup
t→∞

‖x̃(t)‖ ≤ ĉ‖vn‖C(U),

where ĉ = ∥B∥
√
λ̄n

λA
, λ̄ is the largest eigenvalue of the Grammian matrix S(x1, . . . ,xn).

Next, we turn to the proof that lim sup
t→∞

‖f̃n(t)‖ ≤ č‖vn‖C(U). Given ε > 0, there exists a T

such that for all t ≥ T , ‖x̃D(t)‖ < ε or ‖x̃(t)‖ < ĉ‖vn‖C(U) + ε. Without loss of generality,

select the constant T ≥ T1. Let s ∈ [T, T +∆1]. Since we know how the state error evolves,

the norm of the state error at s+ δ1 is bounded below by

‖x̃(s+ δ1)‖ =

∥∥∥∥x̃(s) + ∫ s+δ1

s

Ax̃(τ) +BEx(τ)f̃(τ)dτ
∥∥∥∥ ,

≥
∥∥∥∥∫ s+δ1

s

BEx(τ)f̃(T )dτ
∥∥∥∥︸ ︷︷ ︸

term 1

−
∥∥∥∥x̃(s) + ∫ s+δ1

s

Ax̃(τ)dτ

∥∥∥∥︸ ︷︷ ︸
term 2
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−
∥∥∥∥∫ s+δ1

s

BEx(τ)(f̃(τ)− f̃(T ))dτ

∥∥∥∥︸ ︷︷ ︸
term 3

.

Let us consider term 1. We have

∥∥∥∥∫ s+δ1

s

BEx(τ)f̃(T )dτ
∥∥∥∥ = ‖B‖

∣∣∣∣∫ s+δ1

s

Ex(τ)f̃(T )dτ
∣∣∣∣ = ‖B‖

∣∣∣∣∫ s+δ1

s

Ex(τ)
(
f̃n(T ) + vn

)
dτ

∣∣∣∣ ,
≥ ‖B‖

∣∣∣∣∫ s+δ1

s

Ex(τ)f̃n(T )dτ
∣∣∣∣− ‖B‖

∣∣∣∣∫ s+δ1

s

vn(x(τ))dτ

∣∣∣∣ .
Since the PE condition for RM(HΩn) is valid, we have

∥∥∥∥∫ s+δ1

s
BEx(τ)f̃(T )dτ

∥∥∥∥ ≥ γ1‖B‖‖f̃n(T )‖ − δ1‖B‖‖vn‖C(U).

Now consider term 2. We bound term 2 above by

∥∥∥∥x̃(s) + ∫ s+δ1

s

Ax̃(τ)dτ

∥∥∥∥ ≤ ‖x̃(s)‖+
∫ s+δ1

s

‖A‖‖x̃(τ)‖dτ ≤ (1 + ‖A‖δ)(ĉ‖vn‖C(U) + ε).

Before proceeding further, we consider the term f̃(τ) − f̃(T ). Using the learning law gives

us

‖f̃(τ)− f̃(T )‖RM (HX) =

∥∥∥∥∫ τ

T

Γ−1(BEx(ξ)PΩn)
∗x̃D(ξ)dξ

∥∥∥∥
RM (HX)

, (5.11)

≤
∫ τ

T

Γ−1‖B‖‖Ex(ξ)‖‖PΩn‖‖x̃D(ξ)‖dξ ≤ c2(τ − T )ε,

where c2 = Γ−1‖B‖‖Ex(ξ)‖. Thus, since T ≤ s ≤ T +∆, Term 3 is bounded above by

∥∥∥∥∫ s+δ1

s

BEx(τ)(f̃(τ)− f̃(T ))dτ

∥∥∥∥ ≤
∫ s+δ

s

‖B‖‖Ex(τ)‖‖f̃(τ)− f̃(T )‖RM (HX)dτ ≤ c3ε,

where c3 = ‖B‖‖Ex(τ)‖c2
(
1
2
δ21 +∆1δ1

)
. Thus, the norm of the state error at s+δ1 is bounded
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below by

‖x̃(s+ δ1)‖ ≥ γ1‖B‖‖f̃n(T )‖ − δ1‖B‖‖vn‖C(U) − (1 + ‖A‖δ1)(ĉ‖vn‖C(U) + ε)− c3ε.

Since s+ δ1 > s ≥ T , we know that ‖x̃(s+ δ1)‖ < ĉ‖vn‖C(U) + ε. Rearranging the terms in

the above equation, we get

‖f̃n(T )‖ < č‖vn‖C(U) +
(2 + ‖A‖δ1 + c3)

γ1‖B‖
ε,

where č = (2+∥A∥δ1)ĉ+δ1∥B∥
γ1∥B∥ . In the argument above, T is such that ‖x̃n(t)‖ < ĉ‖vn‖C(U) + ε

for all t ≥ T . We can repeat the above analysis for a sequence of ε, {ε̄k}∞k=1 such that

ε̄1 > ε̄2 > . . ., limk→∞ ε̄k → 0. We can find an associated sequence of T , {T̄k}∞k=1 such that

T̄1 < T̄2 < . . ., limk→∞ T̄k → ∞. Note that for any τ such that T̄k ≤ τ < T̄k+1, we have

‖f̃n(τ)‖ < č‖vn‖C(U) +
(2 + ‖A‖δ1 + c3)

γ1‖B‖
ε̄k.

Thus, we conclude that

lim sup
t→∞

‖f̃n(t)‖ ≤ č‖vn‖C(U).

Remarks on Theorem 5.11:

1. The implication of Theorem 5.11 agrees with our intuition. The term ‖f̃n(t)‖ is even-

tually bounded by a constant that depends on the norm of the orthogonal component

vn = (I − PΩn)f of the unknown function, the matrix A and the dimension n. In

particular, the bound depends on the uniform norm of vn on the set U .
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2. By comparing Theorems 5.3 and 5.11, it is clear that both theorems rely on different

notions of PE (PE RM(HX)-2 and PE RM(HΩn)-2, respectively), which leads to dis-

tinct results. The differing notions arise from the fact that the we assume that the

actual function f is an element of RM(HΩn), as opposed to RM(HX), while proving

the sufficient condition in Theorem 5.9.

3. In the above theorem, we can interpret vn as process noise.

We next study in the following corollary a new error bound that is an immediate result of

the sufficient condition derived in Theorem 5.9 and Theorem 5.11. Following the derivation

of the corollary, we compare and contrast the nature of the new convergence rate with the

results in [42].

Corollary 5.12. Suppose that the hypothesis of Theorem 5.11 holds, and suppose that the

set U ⊆ ∪n
i=1Bη(xi), where Bη(xi) is the closed ball of radius η centered at xi ∈ Ωn. If the

function vn is Lipschitz continuous on ∪n
i=1Bη(xi), then

lim
t→∞

‖f̃n(t)‖ ≤ čLη,

where L is the Lipschitz constant and č := č(n) is a constant defined as in Theorem 5.11.

Proof. We know that the function vn vanishes identically on the set Ωn since vn ∈ RM(VΩn),

i.e., vn(xi) = 0 for all xi ∈ Ωn. Since vn is Lipschitz continuous, we have

|vn(y)| ≤ LdM(xi,y) ≤ Lη,

where xi ∈ Ωn, y ∈ Bη(xi) for all i = 1, . . . , n. Since the upper bound Lη is independent of
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index i and the hypotheses of Theorem 5.11 hold, we have

lim
t→∞

‖f̃n(t)‖ ≤ čLη.

Remarks on Corollary 5.12:

1. The corollary shows that if the function vn is Lipschitz continuous and if U ⊆ ∪n
i=1Bη(xi),

then the error bound for limt→∞ ‖f̃n(t)‖ depends on the radius η of the closed balls

Bη(xi). It is clear that the radius η depends on the maximum distance of the state

x(t) from the kernel centers xi ∈ Ωn for t ≥ T1. Thus, by choosing T1 large enough,

we can make the error bound small. However, we cannot make the error bound zero

since the radius η depends on the distance between the neighboring kernel centers. If

the distance between neighboring kernels centers is greater than 2η, then the exists

a t such that x(t) /∈ U ⊆ ∪n
i=1Bη(xi). This suggests that we can try to reduce the

error bound by choosing more kernel centers that are persistently excited. However,

careful study of the constant č shows that it depends on the number of kernel centers

n, č := čn. A rigorous treatment of this strategy will require the control of the product

čnηn.

2. The notion of distance between kernel centers directly ties to the concept of fill distance

hΩn,M defined as

hΩn,M := sup
y∈M

min
xi∈Ωn

dM(xi,y).

It is shown in [42] that for certain kernels, the rate of convergence of the finite-

dimensional function estimate f̂n to the infinite-dimensional function estimate f̂ de-
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pends on the fill distance. We can think of the infinite-dimensional estimate as the

one that makes the error PΩf̃(t) → 0 as t → ∞, where Ω is the PE set (that con-

sists of infinite number of elements). By adding more centers, the finite-dimensional

f̂n(t) = PΩn f̂(t) converges to the infinite-dimensional function estimate PΩf̃(t). This

in turn implies that the bound on the error goes to zero as we add more centers.

3. In Corollary 5.12, we assumes that the function vn is Lipschitz continuous on the

set U . This condition is equivalent to assuming that the change of the function vn

is constrained in the set U . We can come up with conditions that ensure Lipschitz

continuity in a variety of ways. Suppose that the kernel generates an RKHS HX that

is embedded in a Sobolev space W s,2(X). A well known example of such a kernel

is the Sobolev-Matern kernel. If the Sobolev space is of high enough order, Sobolev

embedding theorem implies that the space W s,2(X) is embedded in the Holder space

C(1,0)(X). We know that functions in C(1,0)(X) are globally Lipschitz. This implies

that the function vn is Lipschitz continuous.

5.5 Numerical Example

To interpret and evaluate the implications of the sufficient condition, we consider the un-

damped, unforced version of the nonlinear piezoelectric oscillator studied in [47]. We show

that the sufficient condition implies ultimate boundedness of the function error estimate

when we implement a gradient learning law based adaptive estimator. The governing equa-

tions of this oscillator have the formẋ1(t)ẋ2(t)

 =

 0 1

− K̂
M

0


︸ ︷︷ ︸

A

x1(t)x2(t)

︸ ︷︷ ︸
x(t)

+

0

1

︸ ︷︷ ︸
B

(
−K̂N1

M
x31(t)−

K̂N2

M
x51(t)

)
︸ ︷︷ ︸

f(x(t))

,
(5.12)
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Figure 5.1: State trajectory of the nonlinear system governed by Equation 5.12, when the
initial condition is x0 = [0.05, 0]T . The red loop is the positive limit set. The cyan circle
represents the closed ball centered at the point depicted by marker ∗ in the phase plane.
Marker + represents the point depicted by ∗ in the state trajectory.

where M, K̂ are the modal mass and modal stiffness of the piezoelectric oscillator, respec-

tively. The variables K̂N1 , K̂N2 are constants derived from nonlinear piezoelectric constitutive

laws. [47] The states x1(·) and x2(·) are the modal displacement and modal velocity, respec-

tively. Typically, the two states are not of the same order of magnitude, which inspires the

use of anisotropic kernel functions, i.e. those that are elongated in one direction. However,

equivalently, it is much easier to introduce a scaling factor for the one of the states. We

substitute x1(t) = sx̃1(t) in the governing equations, where s is the scaling factor, and re-

define x(t) := [x̃1(t), x2(t)]
T . For our simulations, we choose M = 0.9745, K̂ = 329.9006,

K̂N1 = −1.2901e+05, K̂N2 = 1.2053e+09 and s = 0.02. Furthermore, we choose the initial

condition x0 = [x̃1(0), x2(0)]
T = [0.05, 0]T .
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Figure 5.1 shows the evolution of the states with time. It is clear that the positive limit set

for the selected initial condition is a smooth, compact, Riemmanian, 1-dimensional manifold

embedded inX = R2. In our simulations, we use the RKHS generated by the Sobolev-Matern

3, 2 kernel, which has the form

R3,2(x,y) =

(
1 +

√
3‖x− y‖

l

)
exp

(
−
√
3‖x− y‖

l

)
, (5.13)

where l is the scaling factor of length. [48]

The adaptive estimation equations are given by Equation 5.7, and

˙̂
fn(t) = Γ−1(BEx(t))∗P (x(t)− x̂(t)). (5.14)

Notice that the above equation specifies the derivative of the function estimate. Using the

reproducing property, we can show that this evolution law is equivalent to

˙̂α(t) = S(x1, . . . ,xn)
−1Γ−1R(xc,x(t))B

TP x̃(t), (5.15)

where all the terms are defined as in Equation 5.9. To build the adaptive estimate, we fix

n, then choose kernel centers x1, . . . ,xn along with the gain parameter Γ, and integrate

Equations 5.7 and 5.15.

Figure 5.1 depicts the state evolution with time as well as the positive limit set of our

example. It is clear from the figure that the state trajectory is uniformly continuous. Our

goal is to choose n kernel centers x1, . . . ,xn that are persistently excited. First let us note

that the trajectory is periodic. Set ∆2 = 2tp, where tp is the period of the state trajectory.

Consider an arbitrary point x1 in the positive limit set. Consider the window Ip = [t, t+2tp]

for any arbitrary t ≥ 0. It is clear that the time spent by the state trajectory in Bϵ(x1)



5.5. Numerical Example 207

Figure 5.2: Pointwise error |f(x) − f̂n(te,x)|. The marker ∗ and the red line represent the
kernel centers and the limit set Ω, respectively.

during any window Ip is bounded below by a constant. In Figure 5.1, consider the (cyan) ball

in the phase plane and any part of the state trajectory that is contained in a time window

of 2tp. It is clear that the time spent by the trajectory in this ball is bounded below. Thus,

using Corollary 5.10, we conclude that the point x1 is persistently excited. We repeat this

analysis until n points are determined. For this specific problem, any discrete finite number

of points in the positive limit set are persistently excited. Note that in our previous analysis,

we did not explicitly calculate the radius ε. However, the above analysis is valid for a ball

of any positive radius centered at a point in the positive limit set. For a point outside the

positive limit set, we need explicit knowledge of ε that is as in Lemma 5.6 and satisfies

Condition 5.7.

In the above analysis, we treat the state trajectory as elements contained in R2. However,
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the state trajectory is contained in the positive limit set, which is a smooth, compact,

Riemmanian 1-dimensional manifold M embedded in X = R2. We can treat the problem

as evolution on a manifold and restrict the Hilbert space of function HX to the manifold.

Analysis similar to the one given above holds in this case. The primary difference is that we

consider closed balls that are contained in the one-dimensional manifold M as opposed to

ones contained in R2. We can determine the persistently excited points in M and combine

our analysis given in [42] to determine approximation rates of convergence.

Figure 5.2 depicts the pointwise error |f(x)− f̂n(te,x)| after running the adaptive estimator

for te = 150 seconds with 50 kernel centers initialized at αi(0) = 0.001 for all i = 1, . . . , 50.

In our simulations, we set Γ = 0.001 and l = 0.005. Note that the function f(x) in Equation

5.12 is clearly not in the space of HΩ50 , where Ω50 is the set of 50 kernel centers in the positive

limit set denoted by the marker ∗ in Figure 5.2. No linear combination of kernels, given by

Equation 5.13, centered at points in Ω50 will be equation to f(x). Thus, based on our

analysis in Section 5.4, we can only guarantee boundedness of the asymptotic function error

in the neighborhood of the positive limit set. Figure 5.2 clearly shows that the pointwise

error is bounded around the positive limit set. Note, in our theorems imply convergence in

the RM(HX) norm. However, in an RKHS, convergence in RKHS norm implies pointwise

convergence. In fact, since we consider only RKHS that are uniformly bounded, convergence

in RKHS norm implies uniform convergence.

5.6 Conclusion

In this chapter, we have derived a sufficient condition for different notions of PE in RKHS

defined over embedded manifolds. This sufficient condition is valid for RKHS generated

by continuous, strictly positive definite kernels. We have studied the implications of the
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sufficient condition in the case when the RKHS is finite or infinite-dimensional. When

the unknown function resides in a finite-dimensional RKHS, the sufficient condition implies

convergence of function error estimate. In the more general case when we only know that the

unknown function resides in an infinite-dimensional RKHS, the sufficient conditions implies

ultimate boundedness of the function estimate error by a constant that depends on the

approximation error. Finally, the numerical example has illustrated the practicality of the

sufficient condition.
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Chapter 6

Conclusion

The work in this dissertation makes a number of novel contributions to the extensive re-

search on piezoelectric systems. The first part of this dissertation introduces and describes a

systematic approach for designing piezoelectric oscillator arrays for wide-band attenuation.

Such oscillator arrays are advantageous in that they have a low mass ratio when compared

to alternative, contemporary vibration attenuation solutions like meta-structures. A cen-

tral concern of the techniques introduced in the dissertation is how theory and design can

be used to treat when there is uncertainty in the host structure. The performance of the

newly introduced theory and design methods are demonstrated using simulations as well as

experiments, as discussed in Chapter 2.

The second substantial topic addressed in the dissertation is an analysis of the RKHS embed-

ding method for adaptive estimation as it is applied for modeling nonlinearities in piezoelec-

tric systems. The work in Chapter 3 develops the theory of RKHS embedding for adaptive

estimation, and constructs an algorithm for estimating nonlinear functions in piezoelectric

models. Chapter 4 presents two algorithms for kernel center selection that is necessary while

implementing RKHS adaptive estimators for identifying functions of the type f : Rd → R.

Chapter 5 derives sufficient conditions for the persistence of excitation of RKHS, which is

needed to ensure convergence of function estimates.
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6.1 Scope for Further Research

The work in this dissertation naturally suggests a number of important, open, and interesting

research questions. Some of the potential directions for future research motivated by this

work are listed below.

6.1.1 Piezoelectric Subordinate Oscillator Arrays

The following is the list of potential research projects that expand on piezoelectric subordi-

nate oscillator arrays’ work in this dissertation.

1. The study of the energy harvesting capabilities of the PSOAs attached to a host struc-

ture.

2. The investigation of active piezoelectric oscillator arrays that tune the shunt capaci-

tance in real-time to overcome the uncertainties in the system.

3. The analysis of the effect of using effective negative capacitance in conjunction with

conventional capacitive circuits on performance recovery capabilities.

6.1.2 RKHS Embedding Methods for Adaptive Estimation

The following research problems related to RKHS embedding methods for adaptive estima-

tion remain to be explored.

1. The experimental validation of the RKHS embedding methods for modeling nonlinear

piezoelectric oscillators.

2. The investigation of interpolation of nonlinear RKHS models to increase the model’s

effectiveness across multiple disjoint persistently exciting sets.
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3. The study of parallels between the persistence of excitation of RKHS as well the concept

of generalized frames.
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