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Output Regulation of Systems Governed by

Delay Differential Equations:
Approximations and Robustness

Sai Tej Paruchuri

(ABSTRACT)

This thesis considers the problem of robust geometric regulation for tracking and disturbance re-

jection of systems governed by delay differential equations. It is well known that geometric regula-

tion can be highly sensitive to system parameters and hence such designs are not always robust. In

particular, when employing numerical approximations to delay systems, the resulting finite dimen-

sional models inherit natural approximation errors that can impact robustness. This demonstrates

this lack of robustness and then addresses robustness by employing versions of robust regulation

that have been developed for infinite dimensional systems. Numerical examples are given to illus-

trate the ideas and to test the robustness of the regulator.



Output Regulation of Systems Governed by

Delay Differential Equations:
Approximations and Robustness

Sai Tej Paruchuri

(GENERAL AUDIENCE ABSTRACT)

Recent years have seen a surge in the everyday application of complex mechanical and electrical

systems. These systems can perform complex tasks; however, the increased complexity makes it

harder to control them. An example of such a system is a semi-autonomous car designed to stay

within a designated lane. One of the most commonly used approaches for controlling such systems

is called output regulation. In the above example, the output regulator regulates the output of the

car (position of the car) to follow the reference output (the road lane). Traditionally, the design of

output regulators assumes complete knowledge of the system. However, it is impossible to derive

equations that govern complex systems like a car. This thesis analyzes the robustness of output

regulators in the presence of errors in the system. In particular, the focus is on analyzing output

regulators implemented to delay-differential equations. These are differential equations where the

rate of change of states at the current time depends on the states at previous times. Furthermore,

this thesis addresses this problem by employing the robust versions of the output regulators.
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Chapter 1

Introduction

Researchers have extensively used delay-differential equations to model population dynamics, de-

lays arising from sensors and actuators, neural networks, and systems with a hysteresis. Kyrychko

and Hogan provide an extensive review of the use of delay differential equations in engineering

in [1]. The delay differential equation can be posed as an infinite-dimensional system. The out-

put regulation of delay systems requires the implementation of infinite-dimensional controllers.

The practical implementation of the infinite-dimensional controllers requires the approximation of

either the controller or the infinite-dimensional system.

The design of output regulators assumes the exact knowledge of the plant. Such controllers are

highly sensitive to any errors in system parameters. The approximation of the delay systems or the

corresponding controller introduces error into the actual system. Furthermore, any perturbation to

the delay system’s parameters (for example, the time delay) can deteriorate the effectiveness of the

controller.

The objectives of this thesis are

1. analyze the effect of the delay system’s parameter error on the controller’s performance,

2. study the effect of approximation schemes on the controller gain, and

3. illustrate the effectiveness of robust controllers.

1



Chapter 2

The Problem of Output Regulation

In the current study, we focus on applying geometric regulation to systems governed by delay

differential equations of the form

ẋ(t) = A0x(t)+A1x(t− r)+B0u(t)+wdist(t) ∈ Rn (2.1)

with initial data

x(0) = η ∈ Rn, x(s) = ϕ(s), ϕ(·) ∈ L2(−r,0;Rn). (2.2)

The controlled output of the system is defined by

yc(t) =C0x(t) ∈ Rp. (2.3)

Here, r > 0 is a time delay, A0, A1 are n× n matrices, B0 is n×m and C0 is p× n . The goal of

output regulation is to track a given reference signal yre f (t) ∈ Rp while rejecting the disturbance

wdist(t).

We assume that the reference signal yre f (t) and the disturbance wdist(t) are the outputs to a finite

dimensional exogenous system. In particular, w(t) ∈ Rq satisfies the initial value problem

ẇ(t) = Sw(t), w(0) = w0 ∈ Rq, (2.4)

2
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where S is an q×q matrix. The disturbance and reference signals are assumed to have the form

wdist(t) = P0w(t) and yre f (t) =−Q0w(t), (2.5)

where P0 is n×q and Q0 is p×q. The error is defined by

e(t) := yc(t)− yre f (t), (2.6)

which implies

e(t) =C0x(t)+Q0w(t). (2.7)

It is well known ([2, 3, 4, 5]) that the initial value problem for the retarded delay equation (2.1) -

(2.2) is equivalent to the infinite dimensional system on the state space Z = Rn×L2(−r,0;Rn) of

the form

ż(t) = A z(t)+Bu(t)+Pw(t) (2.8)

with initial condition

z(0) = [η ϕ(·)]> ∈ Rn×L2(−r,0;Rn). (2.9)

The system operator A is defined on the domain

D(A ) =


 η

ϕ(·)

 : ϕ(·) ∈ H1(−r,0;Rn), ϕ(0) = η

 (2.10)

by

A

 η

ϕ(·)

=

A0η +A1ϕ(−r)

ϕ ′(·)

 , (2.11)
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where ϕ ′(·) is the derivative of ϕ(·).

The operators B : Rm→ Z and P : Rq→ Z are defined by

Bu =

B0u

0


and

Pw =

P0w

0

 ,
respectively and C : Z→ Rp is given by

C

 η

ϕ(·)

=C0η . (2.12)

The reference signal is assumed to have the form yre f =−Qw(t). Note that the operator Q : Rq→

Rm and is defined by Q = Q0 so that the error for the distributed parameter system (2.8) - (2.9) is

given by

e(t) = yc(t)− yre f (t) = C w(t)+Qw(t) = C z(t)+Q0w(t). (2.13)

In [2] it is shown that A generates the C0-semigroup S(t) : Z→ Z such that for all [η ϕ(·)]> ∈ Z

S(t)

 η

ϕ(·)

=

x(t)

xt(·)

 , (2.14)

where x(t) is the solution to (2.1) - (2.2) with u(t) = ω(t) = 0 and xt(·) ∈H1(−r,0;Rn) is the past

history function defined by xt(s) = x(s+ t) for all s ∈ [−r,0]. Moreover, it is straightforward to

show that the operators B, P , C and Q0 are all bounded.
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2.1 The Problem of Output Regulation: Full Information

The goal is to find bounded linear operators K : Z→ Rm and L : Rq→ Rm such that if

u(t) =−K z(t)+L w(t), (2.15)

then the system

żcl(t) = [A −BK ]zcl(t) (2.16)

is stable and

lim
t→∞
||e(t)||= 0, (2.17)

for all z0 ∈ Z and w0 ∈ Rq. Observe that if the system is stable or there is a known feedback

operator K that stabilizes the system, then the problem reduces to finding the gain L .

2.2 The Problem of Output Regulation: Error Feedback

In this case one assumes that only the error is available for measurement and consequently the

controller is dynamic. Now the goal is to find a (well-posed) dynamical system on a Hilbert space

V of the form

ξ̇ (t) = G1ξ (t)+G2e(t) (2.18)

where G2 : Rp → V is bounded and a bounded operator F : V → Rm which defines a feedback

controller by

u(t) =−Fξ (t). (2.19)

Observe that the well-posedness conditions implies that the operator G1 generates a C0−semigroup

on V .
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The resulting closed-loop system is a dynamical system on Ze = Z×V ×Rq defined by

ż(t) = A z(t)−BFξ (t)+Pw(t), (2.20)

ξ̇ (t) = G2C z(t)+G1ξ (t)+G2Q0w(t) (2.21)

ẇ(t) = Sw(t). (2.22)

Lemma 2.1. The closed-loop system (2.20)- (2.22) is well-posed on Ze,

Proof: Let Adia and Apert denote the operators

Adia =


A 0 0

0 G1 0

0 0 0

 , Apert =


0 −BF P

G2C 0 G2Q0

0 0 S

 ,

respectively. The diagonal operator Adia generates a C0−semigroup on Ze and since Apert is a

bounded operator, the operator

Ae = Adia +Apert =


A −BF P

G2C G1 G2Q0

0 0 S


also generates a C0−semigroup on Ze. This completes the proof.

The goal of output regulation with error feedback is to find operators G1, G2 and F such that the

system

ż(t) = A z(t)−BFξ (t), (2.23)

ξ̇ (t) = G2C z(t)+G1ξ (t), (2.24)
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is asymptotically (exponentially) stable and the error defined by (2.13) satisfies

lim
t→∞
||e(t)||= 0, (2.25)

for all z0 ∈ Z , ξ0 ∈V and w0 ∈ Rq.

In this setting, we can apply the approaches in [6, 7, 8, 9] and [10] to formulate regulator and robust

regulator problems that extend the finite dimensional problems as defined in the classic book [11].

In fact, in [7] the authors used a simple delay equation as an example to illustrate their theory.

Also, in certain cases the dynamic regulator approach developed in the book [12] can be applied

to this system without the need to use the distributed parameter formulation (see [13]).

One of the important practical issues is the problem of computing the geometric regulator. As

always, there are two basic approaches to dealing with computation. The design then approximate

approach (DTA) solves the infinite dimensional regulator problem to produce an infinite dimen-

sional controller and then approximates the controller. In the approximate then design (ATD)

approach one employs numerical methods to approximate the distributed parameter system, pro-

ducing finite dimensional system and then solves the regulator problem for these approximate sys-

tems. Roughly speaking, the approach in the recent paper [13] is a DTA method and the approach

in [10] is a ATD method.

There is a very nice analysis of the convergence of the approximate controllers (and corresponding

reduced order controllers) in [10]. As noted in that paper, dual convergence is important and,

for the parabolic and hyperbolic PDE problems in that paper, standard Galerkin methods yield

convergence to the dual system. Dual convergence is obtained since these types of systems are

defined by normal dynamic operators A . However, the system operator A defined by (2.10)-(2.11)

for the delay equation is highly non-normal and dual convergence can fail for certain Galerkin

methods (see [14]).
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2.3 Approximating Systems

In this section, we consider the (ATD) approach applied to problems governed by the delay system

(2.1)-(2.3) by introducing approximations. Results are presented for three approximating schemes:

• (AVE) a finite volume (averaging) method [2],

• (BK) a finite element method [15] and

• (IK) a spline based scheme [16].

The resulting approximating models are ODE systems of the form

żN(t) = ANzN(t)+BNu(t)+PNw(t) (2.26)

yN(t) =CNzN(t) (2.27)

with error

eN(t) =CNzN(t)+QNw(t), (2.28)

where QN =Q0 for all N ≥ 1. Since we are only considering finite dimensional exogenous systems,

the exogenous system is still defined by

ẇ(t) = Sw(t). (2.29)

All the approximations above are obtained by first selecting a finite dimensional subspace ZN of the

state space Z = Rn×L2(−r,0;Rn) and then projecting the system onto ZN . A general framework

for convergence of controllers is given in [17]. Following [17] we consider a sequence (finite

dimensional) approximating problems defined by (ZN ,AN ,BN ,PN ,CN ,QN), where ZN ⊂ Z and πN

is the orthogonal projection onto ZN . Let S(t), S∗(t), SN(t) and S∗N(t) denote the C0−semigroups

generated by the operators A , A ∗, AN and A∗N , respectively.
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Definition 2.2. We say this approximating system is convergent if

HC: For each z ∈ Z , u ∈ Rm and w ∈ Rq,

(HCa) : SN(t)πNz→ S(t)z,

(HCb) : BNu→Bu,

(HCc) : CNπNz→ C z,

(HCp) : PNw→Pw,

where the convergence in (HCa) is uniform on compact time intervals.

Definition 2.3. We say this approximating system is dual convergent if

HD: For each z ∈ Z , u ∈ Rm and y ∈ Rp,

(HDa) : S∗N(t)πNz→ S∗(t)z,

(HDb) : B∗NπNz→B∗z,

(HDc) : C∗Ny→ C ∗y,

(HDp) : P∗NπNz→P∗z,

where the convergence in (HDa) is uniform on compact time intervals.

Remark 2.4. The (BK) scheme is not “dual convergent” which causes problems for optimization

based controller designs (see [14] and [18] for details). This is not an issue for the regulator

problem, but can be a problem for model reduction and optimization based methods that require

dual convergence.

The family of pairs (AN ,BN) is said to be uniformly stabilizable if there is a sequence of bounded

operators KN : ZN → Rm such that supN ||KN ||<+∞ and the closed-loop system satisfies

||e(AN−BNKN)t || ≤M1e−ω1t (2.30)
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for fixed M1 ≥ 1 and ω1 > 0. Likewise, the family of pairs (AN ,CN) is said to be uniformly

detectable if there is a sequence of bounded operators FN : ZN → Rp such that supN ||FN || < +∞

and the closed-loop system satisfies

||e(AN−FNCN)t || ≤M2e−ω2t (2.31)

for fixed M2 ≥ 1 and ω2 > 0.

Remark 2.5. Observe that if the semigroups S(t) and SN(t) are exponentially stable, then the

family of pairs are both uniformly stabilizable and uniformly detectable since we can take KN =

FN = 0.

We assume that the following two conditions hold in the analysis going forward.

Assumption 2.1. The semigroup S(t) is stable and family SN(t) is uniformly stable in the sense

that there exist M ≥ 1 and ω > 0 such that

||S(t)|| ≤Me−ωt and ||e(AN)t || ≤Me−ωt (2.32)

for all N ≥ 1.

Assumption 2.2. The exogenous system (2.29) is neutrally stable.

In this case we take the feedback gain operators K and KN to be zero. This is not essential, but

it simplifies the analysis and retains the emphasis of this thesis on geometric regulation. Also, we

note that if condition (HCa) holds, then the Trotter-Kato Theorem implies that for N sufficiently

large (2.32) holds.

The three numerical schemes above are detailed in [18]. For example, for N ≥ 1 the finite volume



2.4. EXISTENCE AND CONVERGENCE 11

(AVE) scheme in [2] produces the following approximating system of size N +1:

AN =



A0 0 0 · · · A1

N
r In −N

r In 0 · · · 0

0 N
r In −N

r In · · · 0
...

... . . . . . . ...

0 0 · · · N
r In −N

r In


, BN =

[
B0 0 · · · 0

]>
, (2.33)

BN =

[
B0 0 · · · 0

]>
, PN =

[
P0 0 · · · 0

]>
, (2.34)

CN =

[
C0 0 · · · 0

]
and QN = Q0. (2.35)

The form of the approximating systems for the (BK) finite element method and the (IK) spline

based Galerkin scheme can be found in [15] and [16], respectively. In all cases we note that

AN = AN(A0,A1,r), so that perturbations of the system parameters A0, A1 and the delay r could

impact robustness. Indeed, we will show this is the case in Section 2.5 and address this issue by

applying the methods in [6, 8, 9, 10] in Chapter 3.

2.4 Existence and Convergence

In this section, let us take a look at when the problem with full state information has a solution. The

discussion for the problem with error feedback is similar (see [8, 10]). In light of Remark 2.5, we

set K = 0 and KN = 0 so that the solution to the output regulation problem with full information

reduces to the computation of the operator L : Rq→ Rm and the feedback controller becomes

u(t) = L w(t).
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Also, the solutions to the approximate problems defined by (2.26)-(2.28) with exogenous system

(2.29) are given by

uN(t) = LNw(t), (2.36)

where LN : Rq→ Rm. Noting that QN = Q0 for all N ≥ 1 , then the next two results follow from

Theorem 1.1 in [12].

Theorem 2.6. If Assumptions 2.1 and 2.2 hold, then the regulator problem with full information is

solvable if and only if there exist bounded linear operators Π : Rq→ Z with Range(Π) ⊂ D(A )

and L : Rq→ Rm satisfying the regulator equations

ΠS = A Π+BL +P, (2.37)

0 = C Π+Q0. (2.38)

Here, u(t) = L w(t) solves the infinite dimensional problem.

The proof of this theorem can be found in [12].

Theorem 2.7. If Assumptions 2.1 and 2.2 hold, then the approximate regulator problems with full

information are solvable if and only if there exist bounded linear operators ΠN : Rq → ZN and

LN : Rq→ Rm satisfying the regulator equations

ΠNS = ANΠN +BNLN +PN , (2.39)

0 =CNΠN +Q0. (2.40)

Here, u(t) = LNw(t) solves the finite dimensional problem.

The proof of this theorem can be found in [11].
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Before we look at the theorem about convergence of the gain operators, let us take go over a

Lemma that is essential for the convergence proof.

Lemma 2.8. Assume TN are bounded linear operators, TN converges strongly to the bounded linear

operator T (i.e., ‖TNz−T z‖→ 0 for all z ∈ Z). If there is a bound c so that ‖TN‖ ≤ c and if B is a

compact operator, then TNB converges in norm to T B. (i.e., ‖TNB−T B‖→ 0).

Theorem 2.9. If Assumptions 2.1 and 2.2 hold and the approximating system is convergent (i.e.,

satisfies condition HC given in Definition 2.2 above), then the approximate gain operators LN

converge in norm to L .

Proof. We prove this theorem for the SISO system case with P = PN = 0 and S = 0. This proof

easily extends to more general cases. Under these assumptions, the regulator equations simplify to

0 = ANΠN +BNLN ,

0 =CNΠN +Q0.

We can rewrite the first equation above to get ΠN = −A−1
N BNLN . Substituting the expression for

ΠN into the second regulator equation, we get

0 =CN(−AN)
−1BNLN +Q0,

which implies

LN =−
(
CN(−AN)

−1BN
)−1

Q0.

In the above equation, Q0 is a scalar that does not depend on N. By Trotter-Kato’s theorem [19, 20],

we note that if the approximating system is convergent, then R(λ0,AN)πNz→R(λ0,A )z for all λ0
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such that Real(λ0)>−ω and for all z∈ Z. The notation R(λ0,A) denotes the resolvent of A and is

defined as R(λ0,A) = (λ0I−A)−1. Recall that ω satisfies ||S(t)|| ≤Me−ωt and ||e(AN)t || ≤Me−ωt .

Choose λ0 = 0>−ω . Thus, Trotter-Kato theorem gives us (−AN)
−1πNz→ (−A )−1z for all z∈ Z.

We note that the norm ‖(−AN)
−1‖ is bounded above by a constant c for all N. We can show this

using strong convergence of (−AN)
−1 to (−A )−1, that is (−AN)

−1πNz→ (−A )−1z for all z ∈ Z,

and uniform boundedness principle. We also note that BNu = Bu and CNπNz = C z for all u ∈ Rm

and z∈ Z. Thus, using Lemma 2.8, we conclude that (−AN)
−1BN converges in norm to (−A )−1B,

which in turn implies that LN converges in norm to L .

Note that dual convergence is not needed to establish convergence of the gain matrices. However,

if one were to use an optimization based method to first stabilize the system (say a LQR controller),

then dual convergence is also necessary.

Although the theoretical results above provide a basis to claim convergence, there remains the

questions of robustness with respect to numerical approximations and to model parameters. In the

next section, we see that the solution to the problem with full information need not be robust with

respect to errors caused by numerical computation and not robust with respect to model parameters.

However, we also see in Chapter 3 that the robust methods developed by Paunonen and co-workers

can be used to recover robustness for these delay systems.

2.5 An Example and Numerical Results

Example 2.10. Consider the scalar system

ẋ(t) = a0x(t)+a1x(t− r)+u(t)+wdist(t), (2.41)

y(t) = cx(t), (2.42)
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Table 2.1: AVE System Gains for Increasing N values

N l1 l2 l3
8 -1.3618 0.15006 2.0000
16 -1.3549 0.16986 2.0000
32 -1.3520 0.18023 2.0000
64 -1.3506 0.18552 2.0000

128 -1.3500 0.18820 2.0000

with disturbance and reference signals

wdist(t) = cos(t) and yre f (t) = 1− sin(t), (2.43)

respectively.

Thus, the exogenous system ẇ(t) = Sw(t) is defined by

S =


0 1 0

−1 0 0

0 0 0

 with w(0) =
[

1 1 1

]>
(2.44)

and

P0 =

[
(1/2) (1/2) 0

]
, Q0 =

[
(1/2) (−1/2) −1

]
. (2.45)

Note that the system (2.41) is stable for any a0, a1 satisfying a0 < 1/r and −π/2r < a1 < 0 (see

page 54 in [21]). For the numerical example we set a0 = a1 = −1, r = 1 and c = 1. We set the

initial data as x(0) = 1 and ϕ(s) = 1 for all s ∈ [−1,0).

Since q = 3, the gains LN and L are 3× 1 matrices of the form L =

[
l1 l2 l3

]
. Tables 2.1,

2.2 and 2.3 demonstrate convergence of the gains for all three approximation schemes. Observe

that the (BK) finite element method produces convergent gains even though this scheme is not dual

convergent. Also, note that the higher order scheme (IK) has converged to the “infinite dimensional
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Table 2.2: BK System Gains for Increasing N values

N l1 l2 l3
8 -1.3286 0.17416 2.0000
16 -1.3396 0.18254 2.0000
32 -1.3447 0.18671 2.0000
64 -1.3471 0.18888 2.0000

128 -1.3483 0.18984 2.0000

Table 2.3: IK System Gains for Increasing N values

N l1 l2 l3
8 -1.3503 0.19108 2.0000
16 -1.3496 0.19094 2.0000
32 -1.3495 0.19090 2.0000
64 -1.3494 0.19089 2.0000

128 -1.3494 0.19089 2.0000

gain” L =

[
−1.3494 0.19089 2.0000

]
when N = 64. Although all schemes are convergent (as

stated in Theorem 2.9), the (IK) scheme converges much more rapidly.

For the simulations we assume the initial data for the delay system is the constant function ϕ(s) = 1

and η = 1. As one can see in Figure 2.1, the controller does an excellent job of tracking the

reference signal. Note that the tracking error is essentially zero for time t > 20. Figure 2.2 shows

the reference signal yre f and the controlled output y(t).

As per Theorem 2.7, the gain LN obtained for the above case should work for all initial conditions

w0 ∈Rq of the exosystem. This means, the controller should track for any disturbance wdist(t) and

reference signal yre f generated by the exosystem defined the matrix S. We ran the output regulator

for w0 =

[
1 0 1

]>
. The regulator tracks the reference output perfectly as seen from Figures 2.3

and 2.4.

Observe that the gain lN
3 = l3 = 2 for all N ≥ 8 and for all three schemes. This is due to the special

structure of the delay system and the corresponding approximation schemes. A natural question is,
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Figure 2.1: Error for N = 128 (IK) Model: Output Regulator
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Figure 2.5: Error for l3 = 2+δ = 2.1: Output Regulator Fails

“What happens if the numerical gain computed for a low order model such as the (AVE) scheme

is applied to delay system (or a sufficiently accurate high order model)”? A more general question

is, “What is the impact of perturbations in gains on regulator performance”? Thus, we consider

two robustness questions:

Q1: Is the control robust with respect to numerical errors that naturally occur in the compu-

tation of the gains?

Q2: Is the control robust with respect to changes in the system parameters?

For the problem here, the answer to both questions is no. To illustrate this lack of robustness for

question Q1, we ran several cases with small perturbations in the computed gains and the resulting

closed-loop systems do not track the reference signal. The most dramatic example was obtained

by perturbing the third gain l3 = 2. For example, if one sets δ = 0.1 and perturb the infinite

dimensional gain L to Ldelta =

[
−1.3494 0.19089 2.00+δ

]
, then as shown in Figure 2.5 and
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Figure 2.6: Outputs for l3 = 2+δ = 2.1: Output Regulator Fails

Figure 2.6 below, the error reaches a non-zero steady state constant so that the control fails to track

yre f = 1− sin(t). The case with l3 = 2−δ = 1.9 produces the same type of results.

We also ran the case where we use the (AVE) scheme gain L128 in the (IK) scheme plant with

N = 128. Calculating the (AVE) scheme gain is more computationally efficient than that of the

(IK) scheme. On the other hand, the (IK) scheme converges to the actual system faster, which

is evident from the gain convergence in Table 2.3. Thus, to test the actual controller, it might be

efficient to compute the gain using a computationally efficient scheme ((AVE) scheme in this case)

and implement it in another scheme which is more close to the actual system ((IK) scheme in this

case). Before looking at the results, we note from Table 2.1 that the (AVE) scheme gain L128 is

close but not equal to the infinite-dimensional gain L. Figures 2.7 and 2.8 show that the error does

not go to zero demonstrating the lack of robustness for question Q1.

Now consider question Q2. As noted above AN = AN(A0,A1,r), so it is natural to consider per-
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turbations in the delay r = 1. In this numerical experiment we apply the infinite dimensional gain

L (computed for the nominal value r = 1) to the perturbed systems defined with rpert = 1.1. As

shown in Figure 2.9, the controller designed for the delay r = 1 applied to the perturbed system

with r = 1.1 fails to drive the error to zero. Thus, there is no robustness with respect to the delay

parameter. The case with r = 1−0.1 = 0.9 is essentially the same.

In view of the results in Example 2.10, it is clear that robustness is an issue with output regulation

even with full information. In the next chapter, we apply the method described in [6, 8, 9, 10] to

produce a robust regulator.



Chapter 3

The Problem of Robust Regulation

In this chapter, we show that one can recover robustness by using the robust regulator designs

discussed in [6, 8, 9, 10]. We consider the same delay system defined in Example 2.10 and illustrate

that robust regulators can deal with the type of perturbations discussed there.

The robust controller is a dynamic controller similar in structure to (2.18)-(2.19). Thus, one seeks

operators G1, G2 and F such that

że(t) = G1ze(t)+G2e(t), (3.1)

where the bounded operator F : Ve→ Rm defines a feedback controller by

u(t) =−F ze(t). (3.2)

Although the system (3.1)-(3.2) is similar in structure to (2.18)-(2.19), the spaces are different

and the construction is more complex. For simplicity, we consider the derivation of the robust

controller for the finite-dimensional approximation of the delay system (2.26) and (2.27). The

controller construction for the infinite-dimensional case is well documented in [6, 8, 9, 10] and

we refer the reader to those papers for details of the method. The finite-dimensional dynamic

23
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controller has the form

żN,e(t) = GN,1zN,e(t)+GN,2e(t), zN,e(0) = zN,0 = πNz0, for all z0 ∈ Z,

u(t) = FNzN,e(t)

with eN(t) := yN(t)− yre f (t) to achieve robust output regulation.

3.1 The Robust Regulator Problem with Partial Information

The goal of the robust regulator problem is to find matrices GN,1,GN,2 and FN such that if

żN,e(t) = GN,1zN,e(t)+GN,2e(t), zN,e(0) = zN,0 = πNz0, for all z0 ∈ Z,

u(t) = FNzN,e(t)

with eN(t) := yN(t)− yre f (t), then the closed loop system

 żN,cl(t)

żN,cl,e(t)

=

 AN BNFN

GN,2CN GN,1


︸ ︷︷ ︸

AN,e

 zN,cl(t)

zN,cl,e(t)



is stable, and

lim
t→∞
||eN(t)||= 0, (3.3)

for all zN,0 = πNz0 ∈ ZN and w0 ∈ Rq. Furthermore, if the matrices (AN ,BN ,CN ,PN ,Q0) are per-

turbed to
(
ÃN , B̃N ,C̃N , P̃N , Q̃0

)
such that the closed system remain exponentially stable, then for all

initial conditions,

lim
t→∞
||eN(t)||= 0. (3.4)
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3.2 Robust Regulator Design

In this section, we go over the individual steps involved in the design of robust controller. The

controller design given in this section is inspired from the infinite dimensional controller design

given in Section 5 in [8]. Refer [8] for the more general controller design discussion. Note,

Assumptions 2.1 and 2.2 still hold in the following controller design. Additionally, we assume the

following conditions.

Assumption 3.1. The algebraic multiplicity of the eigenvalues of the matrix S is one.

Assumption 3.2. The spectrums of AN and S do not intersect (ρ(AN)∩ρ(S) = /0).

Assumption 3.3. The system defined by AN ,BN ,CN is SISO (single input single output).

1. Define the matrices GN,1, GN,2 and FN as

GN,1 =

G1 G2CN

0 AN +LCN

 , GN,2 =

G2

L

 ,
FN =

[
K1 0

]
.

In the above definition, the matrix G1 is defined as

G1 =


iω1

. . .

iωq

 ,

where iω1, . . . , iωq are the eigenvalues of the matrix S. Choose the matrix K1 as

K1 =

[
K1

1 . . . Kq
1

]
,



26 CHAPTER 3. THE PROBLEM OF ROBUST REGULATION

where Kk
1 := P(iωk)

−1 with P(λ ) := CNR(λ ,AN)BN . Note, the matrix R(λ ,AN) denotes

the resolvent of AN and for finite dimensional cases, it can be expressed as R(λ ,AN) =

(λ I−AN)
−1.

2. Define the matrix

H =


H1

. . .

Hq

 ,

where Hk = R(iωk,AN)BNKk
1 .

Now, define the matrix C1 =CNH.

3. Choose the matrix G2 such that G1 +G2C1 is Hurwitz.

Now, calculate the matrix L using the relation L = HG2.

Lemma 3.1. The matrix H solves the Sylvester equation HG1 = ANH +BNK1.

Proof. The diagonal structure of matrices G1 and H allows us to simplify the Sylvester equation

to the form

Hkiωk = ANHk +BNKk
1

for k = 1, . . . ,q. The above equation can be rewritten as

(iωk−AN)Hk = BNKk
1 .

Thus, we get Hk = (iωk−AN)
−1 BNKk

1 , which is how we defined Hk during the controller design.



3.2. ROBUST REGULATOR DESIGN 27

Lemma 3.2. The pair (C1,G1) is detectable.

Proof. The pair (C1,G1) is detectable if and only if there exists no eigenvector of G1 that is orthog-

onal to all the rows of C1 (Theorem 6.2-5 of [22]). Thus, the pair (C1,G1) is detectable if and only

if G1 p = λ p, C1 p = 0 =⇒ p = 0. Since G1 is a diagonal matrix with iω1, . . . , iωr as its diagonal

entries, the components of the vector p should satisfy p j = 0 for j 6= k and pk 6= 0. Now consider

C1 p. We have

C1 p =CNH p =CNHk pk =CN(iωk−AN)
−1BNKk

1 pk

= P(iωk)Kk
1 pk = pk 6= 0.

Thus, the pair C1,G1 is detectable.

Theorem 3.3. The closed loop system

AN,e =

 AN BNFN

GN,2CN GN,1


is stable.

Proof. We substitute for GN,1 and GN,2 to express the matrix Ae in the form

AN,e =


AN BNK1 0

G2CN G1 G2CN

LCN 0 AN +LCN


To prove AN,e is stable, it is sufficient to prove the stability of the similarity transform ÂN,e =
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QeAN,eQ−1
e , where

Qe = Q−1
e =


I 0 0

0 I 0

−I H −I

 .

We have

ÂN,e =


I 0 0

0 I 0

−I H −I




AN BNK1 0

G2CN G1 G2CN

LCN 0 AN +LCN




I 0 0

0 I 0

−I H −I



=


AN BNK1 0

0 G1 +G2CNH −G2CN

0 −BNK1 +HG1 +HG2CNH−ANH−LCNH −HG2CN−AN−LCN



=


AN BNK1 0

0 G1 +G2CNH −G2CN

0 −BNK1 +HG1−ANH AN


From Lemma 3.1, it is clear that −BNK1 +HG1−ANH = 0. Thus, we get

ÂN,e =


AN BNK1 0

0 G1 +G2C1 −G2CN

0 0 AN

 .

The stability of the block diagonal matrix ÂN,e depends on the stability of AN and G1 +G2C1.

By assumption, the system matrix AN is stable. Recall that we choose G2 such that the matrix

G1 +G2C1 is stable. Note, the detectability of the pair (C1,G1) (shown in Lemma 3.2) allows us

to choose the required G2. This proves that the closed loop system matrix AN,e is stable.
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3.3 Robust Controller Example
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Figure 3.1: Error for r = 1: Robust Controller

Applying the robust regulation theory discussed above to the example given in Section 2.5, we

generated a robust controller of the form (3.1)-(3.2) for the nominal value of the delay r = 1. In

our design, we chose G2 =

[
−1 −1 −1

]>
, which made the matrix G1 +G2C1 Hurwitz. Figure

3.1 shows the error e(t), and Figure 3.2 shows the outputs that generate this error. Although the

robust controller drives the tracking error to zero, good tracking does not occur until t > 40 as

compared to t > 20 for the classical output regulator as shown in Figure 2.1.

From the above analysis, we saw that the implementation of the robust regulator for this control

problem reduced the rate at which error converges to zero. However, the advantages of the ro-

bust regulator become evident when the actual plant parameters are perturbed. To show this, we

perturbed the delay r to 1.1 and 0.9. In Figure 3.3 we plot the tracking error for the controlled

system with rpert = 1.1. In Figure 3.4 we plot the same for rpert = 0.9. In both these cases, the
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Figure 3.2: Outputs for r = 1: Robust Controller
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Figure 3.3: Error for r = 1+0.1 = 1.1: Robust Controller
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Figure 3.4: Error for r = 1−0.1 = 0.9: Robust Controller

robust controller drives the tracking error to zero. We also note that reference tracking occurs at

approximately same time as r = 1 case. This was typical of the many numerical runs we conducted

to test the method.



Chapter 4

Conclusion

In this study, we use a system defined by a delay differential equation to set up and formulate

the standard distributed parameter regulator problem in order to establish convergence of numer-

ical methods and to investigate the robustness of the output regulator control with respect to both

numerical errors and time delays. We showed that forward convergence is sufficient to establish

convergence of the gain operators. We also observed that the full information controller is not

robust to:

(i) numerical errors and/or perturbations in certain gains, and

(ii) perturbations in the delay.

We showed that by applying the recent results on robust regulation of distributed parameters sys-

tems one could deal with both problems.

The delay equation is an infinite dimensional distributed parameter system and as long as the

operator A defined by (2.10)-(2.11) generates an exponentially stable semigroup, the results in

this paper hold. In Example 2.10, this is satisfied even for a0 = 0 with −π/2 <−π/4 = a1 < 0.

Under certain conditions (e.g., the lead matrix A0 in equation (2.1) is stable) the methods in [12]

can be applied directly to the (finite dimensional) delay system (see [13]). Moreover, this can

be done without requiring an exogenous system to generate disturbances or the reference signal.

However, the approach in [13] cannot be directly applied to Example 2.10 with a0 = 0. We are

currently working to modify the approach in [13] to deal with such cases.
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