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Abstract Nonlinearities in piezoelectric systems can
arise from internal factors such as nonlinear constitu-
tive laws or external factors like realizations of bound-
ary conditions. It can be difficult or even impossible
to derive detailed models from the first principles of
all the sources of nonlinearity in a system. This paper
introduces adaptive estimator techniques to approxi-
mate the nonlinearities that can arise in certain classes
of piezoelectric systems. Here an underlying structural
assumption is that the nonlinearities can be modeled as
continuous functions in a reproducing kernel Hilbert
space (RKHS). This approach can be viewed as a data-
driven method to approximate the unknown nonlinear
system. This paper introduces the theory behind the
adaptive estimator, discusses precise conditions that
guarantee convergence of the function estimates, and
studies the effectiveness of this approach numerically
for a class of nonlinear piezoelectric composite beams.
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1 Introduction

Researchers have studied piezoelectric systems exten-
sively over the past three decades for applications to
classical problems like vibration attenuation, which is
described in general treatises like [1–4], aswell asmod-
ern problems like energy harvesting [5,6]. Even though
many of these studiesmodel piezoelectric oscillators as
linear systems, piezoelectric systems are often inher-
ently nonlinear. At low input amplitudes, the effect of
nonlinearity is ordinarily not very pronounced. How-
ever, linear models can fail to capture the dynam-
ics of piezoelectric systems that undergo large dis-
placements, velocities, accelerations, or electric field
strengths. Researchers have consequently also devel-
oped nonlinear models for many examples of piezo-
electric oscillators. A general account of nonlinear field
theory as it arises in modeling piezoelectric continua
can be found in Maugin [7], Yang [8,9], while refer-
ence [10] gives a good account of how active nonlinear
piezostructural components are incorporated in typical
plate or shell models.

Some of the models that are perhaps the most rele-
vant to the system considered in this paper are [11–19].
In these studies, researchers investigate case-specific
models that include higher-order polynomial terms in
the constitutive laws. The models in the above pub-
lications by von Wagner and Hagedorn [11,12], von
Wagner [13,14], Stanton et al. [15,16], Wolf and Got-
tlieb [17], Usher and Sim [18], Triplett and Quinn [19]
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are representative of methods that include higher-order
(polynomial) terms in the electric enthalpy density to
construct nonlinear piezoelectric systemmodels.Using
the extended Hamilton’s principle, Lagrange’s equa-
tions, or Lagrange density methods then gives a corre-
sponding set of nonlinear equations of motion. We can
think of all of these methods, in general, as approx-
imations of the constitutive laws in terms of power
series expansions of the nonlinear term. Thesemethods
are powerful tools and have been successfully imple-
mented tomodel nonlinearities in piezoelectric devices,
as illustrated in the articles cited above. Such methods
for studying nonlinear systems that make explicit use
of power series approximations and polynomial classes
of nonlinearities have a long history. A general discus-
sion of the theory underlying these approaches for non-
linear systems can be found in well-known texts such
as those by Guckenheimer and Holmes [20], Wiggins
[21] for nonlinear systems theory, or Nayfeh [22] on
perturbation methods. Much of the analysis carried out
in using these methods relies expressly on knowing the
exact form of the governing nonlinearity. When such
knowledge is available, strong conclusions regarding
the stability, the nature of bifurcations, the possibil-
ity of internal or parametric resonance, or even chaotic
response of the system can often be made.

Nonlinearities in piezoelectric systems are not just
limited to polynomials nonlinearities discussed above.
There is a rich collection of the literature that studies
history-dependent modeling in piezoelectric systems
and can be broadly classified into (1) rate-dependent
and (2) rate-independent methods. General accounts
of the theory on history-dependent models can be
found in Visintin [23], Brokate and Sprekels [24].
The former class of modeling approaches focuses on
the relationship between the input control and out-
put displacement. Examples of these methods include
the Preisachmodel ([25–27]), Prandtl–Ishlinskiimodel
([28–31]), Krasnoselskii–Pokrovskii model ([32–34]),
and Maxwell model ( [35,36]). In the latter category
of history-dependent models for piezoelectric systems,
rate-dependent methods include the Bouc–Wen Hys-
teresis model ([37–39]), Dahl model ([40,41]), Duhem
model ([42,43]). A review of all these methods can be
found in Gan and Zhang [44]. Overall, it should be
noted that the nature of history-dependent models in
the above references varies substantially, much more
so than the models that feature polynomial nonlinear-
ities that appear in an ordinary differential equation.

The equations governing history dependence in piezo-
electrics may be cast in terms of functional differential
equations, differential inclusions, or in terms of history-
dependent operators depending on the reference.

The above methods are highly effective for model-
ing piezoelectric system behavior when we know the
form of the underlying nonlinearities. However, it is
not always easy to determine this knowledge with a
high level of certainty. Even for the narrow class of
polynomial nonlinearities in the electric enthalpy, the
choice of which polynomial terms to include for a par-
ticular material at hand can be subtle. If the form of
the polynomial nonlinearity is known, then the clas-
sical methods of attack such as in Guckenheimer and
Holmes [20], Wiggins [21], and Nayfeh [22] can and
should be applied: these approaches provide a frame-
work for very strong conclusions. When a system at
hand is poorly understood, or even unknown, data-
driven identification methods have been developed to
address such cases. To be sure, these techniques pri-
marily focus on different types of conclusions than
the methods that rely on precise knowledge of the
form of the uncertainty. Data-driven estimation meth-
ods focus on conditions that ensure the convergence of
a function estimate to the true unknown function, rate
of convergence of the estimation error, and the study
of types of uncertainties that can be estimated. Data-
driven methods for linear systems are well-known,
well-documented, and are described in classical texts
like [45]. Some of these methods have been encoded in
commercially available packages such as, for example,
the LMS PolyMAX software. Data-driven modeling
approaches developed explicitly for nonlinear systems
are an area of increasing interest and as of yet to be fully
developed. Researchers have used system identifica-
tions methods to estimate the parameters in the above
class of conventional nonlinear modeling approaches
discussed above Kao and Fung [46], Fung et al. [47],
and Chen et al. [48]. On the other hand, data-driven
approaches have also been used as standalone meth-
ods to model nonlinear system behavior. One exam-
ple of such a technique is the Dynamic Mode Decom-
position (DMD) method, which approximates Koop-
man modes to model the inherent dynamics [49–54].
Another example would be the use of machine learn-
ingmethods to identify the underlying nonlinearities in
piezoelectric systems [55–59].

In this paper, we introduce a novel data-driven
approach for estimating nonlinearities in piezoelec-
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tric systems. This approach is based on embedding
the unknown nonlinear function appearing in the gov-
erning equation in a reproducing kernel Hilbert space
(RKHS). The unknown function is subsequently esti-
mated through adaptive parameter estimation. Iden-
tification methods that use RKHS have been studied
for problems like terrain measurement [60], control of
dynamical systems [61–63], sensor selection [64], and
learning spatiotemporally evolving systems [65,66]. In
this paper, we extend the methodology initially devel-
oped in Bobade et al. [60] to nonlinear piezoelectric
systems, which are a type of nonautonomous system.
The advantages are as follows:

1. Under some conditions, this technique provides a
bound on the error between the actual and estimated
unknown function.

2. There is a geometric interpretation of the error esti-
mate, in terms of the positive limit set of the system
equations, that describes the subset overwhich con-
vergence is guaranteed. This is a newly observed
property of the RKHS embedding method.

3. This technique not only gives us a nonlinear model
but also estimates the underlyingnonlinear function
over a subspace of the state space.

4. Since the primary assumption is that the nonlinear
function belongs to an RKHS, this technique can
be implemented for a large class of nonlinearities.

5. Unlike conventional modeling techniques, the
explicit structure of the uncertainty in the nonlin-
earity does not influence the estimation approach.
If some portion of the nonlinearity is known, this
knowledge can be used and only the unknown part
of the nonlinearity needs to be estimated.

In this study, we take as a prototypical example of
a piezoelectric system, a piezoelectric composite beam
subject to base excitation, and we model its dynamics
using an adaptive estimation technique based on the
RKHS embedding method.

2 Nonlinear piezoelectric model

In this section, we derive the equations of motion of
a piezoelectric bimorph beam as shown in Fig. 1. We
assume that the beam is excited at its base by input z and
the shunt circuit is open. The method given here repre-
sents the classical approach for deriving the governing
equations for the target class of nonlinear piezoelectric

composites. This section carefully describes the precise
nature of some constitutive nonlinearities and reveals
the limitations of the traditional linear models. In the
current study,we have chosen the electric enthalpy den-
sity for nonlinear continua given in von Wagner and
Hagedorn [11] to serve as the means to construct the
governing equations and formulate the RKHS embed-
ding approach. Note that the RKHS embedding tech-
niques discussed in this paper are not limited to this
problem and can be adapted to model other types of
similar nonlinear electromechanical composite oscil-
lators.

2.1 Nonlinear electric enthalpy density

The expression for electric enthalpy density for mod-
eling linear piezoelectric continua is given by

H = 1

2
CE
i jkl Si j Skl − emi j Si j Em − 1

2
εSim Ei Em,

where CE
i jkl , Si j , emi j , Em , and εSim are the Young’s

modulus, strain, piezoelectric coupling, electric field,
and permittivity tensors, respectively. The quadratic
form above is written using the summation convention.
Based on thermodynamic considerations, the stress
and electric displacement, Ti j and Di , respectively, are
defined in the relations

Ti j = ∂H
∂Si j

∣
∣
∣
∣
s,E

, −Di = ∂H
∂Ei

∣
∣
∣
∣
s,S

.

The associated constitutive laws of linear piezoelectric-
ity have the form

{

Ti j
Dm

}

=
[
CE
i jkl −eni j

emkl εSmn

]{

Skl
En

}

,

where again the summation convention holds in the
expression above. In the above equations, the super-
scripts onCE

i jkl and εSmn emphasize that these constants
are measured when the electric field and strain are held
constant. For piezoelectric beam bending models, con-
sideration is restricted to constitutive laws that have the
form

{

Tx
Dz

}

=
[

CE
xx −ezx

ezx εSzz

]{

Sx
Ez

}

,
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where x ∼ 11, z ∼ 3 are the coordinate directions
depicted in Fig. 1. The coordinate x is measured along
the neutral axis that extends along the length of the
beams, and z is in the transverse bending displace-
ment direction. The permittivity at constant strain can
be related to that at constant stress using the relation

εSzz = εTzz − d2zxC
E
xx .

The piezoelectric strain coefficient dzx is related to
the piezoelectric coupling constant ezx by the equation
ezx = CE

xxdzx . The constitutive laws for the piezoelec-
tric composite are

Tx = CE
xx Sx − dzxC

E
xx Ez,

Dz = dzxC
E
xx Sx + (εTzz − d2zxC

E
xx )Ez .

A detailed discussion of this linear case can be found in
Kurdila and Tarazaga [67], Tiersten [68] and Leo [3].

For large values of the field variables, the effects of
nonlinearity in the piezoelectric continua can become
dominant. We account for these effects by adding
higher-order terms in the expression for the electric
enthalpy density. The nonlinear dependence between
CE
xx , dzx and Sx can be approximated using the rela-

tions [11]

CE
xx = CE(0)

xx + CE(1)
xx Sx + CE(2)

xx S2x ,

dzx = d(0)
zx + d(1)

zx Sx + d(2)
zx S2x .

The corresponding electric enthalpy density has the
form

H = 1

2
CE(0)
xx S2x + 1

3
CE(1)
xx S3x + 1

4
CE(2)
xx S4x

− γ0Sx E − 1

2
γ1S

2
x E − 1

2
ν0E

2 (1)

with

ν0 = εT − (d(0)
zx )2CE(0)

xx ,

γ0 = CE(0)
xx d(0)

zx ,

γ1 = CE(0)
xx d(1)

zx + CE(1)
xx d(0)

zx ,

γ2 = CE(0)
xx d(2)

zx + CE(2)
xx d(0)

zx + CE(1)
xx d(1)

zx .

Fig. 1 Function 2D plot

Thus, the nonlinear constitutive laws, obtained using
the relations shown above, have the form

Tx = CE(0)
xx Sx + CE(1)

xx S2x + CE(2)
xx S3x

− γ0Ez − γ1Sx Ez − γ2S
2
x Ez,

Dz = γ0Sx + 1

2
γ1S

2
x + 1

3
γ2S

3
x + ν0Ez .

See references [15,16,69–71] for other similarmod-
els that are used to represent the behavior of nonlinear
piezoelectric systems.

2.2 Equations of motion

In this subsection, we derive the nonlinear equations of
motion of the typical piezoelectric composite, the can-
tilevered bimorph, as shown in Fig. 1. The extended
Hamilton’s Principle states that of all the possible tra-
jectories in the electromechanical configuration space,
the actual motion satisfies the variational identity

δ

∫ t1

t0
(T − VH) dt +

∫ t1

t0
δWdt = 0 (2)

with kinetic energy T , electromechanical potential VH
defined below, electromechanical virtual work δW , ini-
tial time t0, and final time t1. The kinetic energy of the
nonlinear piezoelectric beam is expressed as

T = 1

2

∫ l

0
m(x)(ẇ + ż)2dx = 1

2
m

∫ l

0
(ẇ + ż)2dx

(3)

with m(x) the mass per unit length of the beam and
m defined as m = ρshs + 2ρph p. In the above equa-
tion, w = w(x, t) is the displacement from the neutral
axis at location x ∈ [0, l] at time t . The variable z(t)
represents the displacement of the root of the beam,
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that is, it is the base motion that occurs in the z direc-
tion defined relative to the beam. The terms ρ and h
represent the density and thickness, respectively. The
subscript s represents the variables corresponding to
the substrate and the subscript p indicates those of the
piezoceramic. The electric enthalpy for the nonlinear
system is given by the relation

VH =
∫

V
HdV =

∫

Vb
HdVb +

∫

Vp

HdVp.

Substituting the expression forH in the above equa-
tion gives

VH =
∫

Vb

1

2
CbS

2
xdVb +

∫

Vc

(
1

2
C (0)
xx S

2
x

+ 1

3
C (1)
xx S

3
x + 1

4
C (2)
xx S

4
x − γ0Sx Ez

− 1

2
γ1S

2
x Ez − 1

3
γ2S

3
x Ez −1

2
ν0E

2
z

)

dVp (4)

with beam Young’s modulus Cb, beam volume Vb
and piezoelectric patch volume Vp. We recall that the
approximation for bending strain in Euler–Bernoulli
beam theory is given by

Sx (x, z, t) = −∂2w(x, t)

∂x2
z,

∀x ∈ [0, l], ∀z ∈
[

− hb
2 − hc,

hb
2 + hc

]

. Consider

the term
∫

Vp

1
2C

(0)
xx S2x in the expression for electric

enthalpy density. With the substitution of the expres-
sion for strain, we get

∫

Vp

1

2
C (0)
xx S

2
x = 1

2
C (0)
xx

∫

Vp

[(w′′)2z2]dV

= 1

2
C (0)
xx

(∫ b

a
(w′′)2dx

)(∫ b

0
dy

)(

2
∫ hb

2 +hc

hb
2

z2dz

)

= 2

[

1

6
C (0)
xx b

{(
hb
2

+ hc

)3

−
(
hb
2

)3
}]

︸ ︷︷ ︸

:=a(0,2)

∫ b

a
(w′′)2dx

= 2a(0,2)

∫ b

a
(w′′)2dx .

The other terms in Eq. 4 can be simplified in a similar
manner. The expression for electric enthalpy density
after simplification has the form

VH = 1

2
Cb Ib

∫ l

0
(w′′)2dx

+ 2a(0,2)

∫ b

a
(w′′)2dx + 2a(2,4)

∫ b

a
(w′′)4dx

+ 2b(1,1)

(∫ b

a
w′′dx

)

Ez

+ 2b(3,1)

(∫ b

a
(w′′)3dx

)

Ez − 2b(0,2)E
2
z , (5)

where we define

a(0,2) := 1

6
C (0)
xx b

[(
hb
2

+ hc

)3

−
(
hb
2

)3
]

,

a(2,4) := 1

20
C (2)
xx b

[(
hb
2

+ hc

)5

−
(
hb
2

)5
]

,

b(0,2) := 1

2
ν0bhclc,

b(1,1) := 1

2
γ0b

[(
hb
2

+ hc

)2

−
(
hb
2

)2
]

,

b(3,1) := 1

12
γ2b

[(
hb
2

+ hc

)4

−
(
hb
2

)4
]

.

For the time being, we omit the effects of damp-
ing in the following derivation. Following the details
included in “Appendix A”, the variational statement of
Hamilton’s principle yields the pair of equations

mẅ + Cb Ibw
′′′′ + 4a(0,2)

(

χ[a,b]w′′)′′

+ 8a(2,4)(χ[a,b](w′′)3)′′ + 2b(1,1)χ
′′[a,b]Ez

+ 6b(3,1)(χ[a,b](w′′)2)′′Ez = −mz̈, (6)

2b(1,1)w
′(b) − 2b(1,1)w

′(a)

+ 2b(3,1)

(∫ b

a
(w′′)3dx

)

+ 4b(0,2)Ez = 0, (7)

where χ[a,b] is the characteristic function of the
interval [a, b] defined as in Eq. 23. These equations
are subject to the corresponding variational boundary
conditions

{

Cb Ibw
′′ + 4a(0,2)χ[a,b]w′′ + 8a(2,4)χ[a,b](w′′)3

+ 2b(1,1)χ[a,b]Ez + 6b(3,1)χ[a,b](w′′)2
}

δw′∣∣l
0 = 0,

123



1402 S. T. Paruchuri et al.

{

Cb Ibw
′′′ + 4a(0,2)

(

χ[a,b]w′′)′ + 8a(2,4)
(

χ[a,b](w′′)3
)′

+ 2b(1,1)χ
′[a,b]Ez + 6b(3,1)

(

χ[a,b](w′′)2
)′ }

δw

∣
∣
∣
∣

l

0
= 0,

and to the initial conditions w(0) = w0 and ẇ(0) =
ẇ0.

We know that the effects of nonlinearity in oscil-
lators become most noticeable near the natural fre-
quency. Hence, we approximate the solutions of Eqs. 6
and 7 using a single-mode approximation w(x, t) =
ψ(x)u(t). Following the detailed analysis in
“Appendix B”, the equations of motion are written

Mü(t) + P z̈(t) + [Kb + Kp]
︸ ︷︷ ︸

K

u(t)

+ KNu
3(t) + [B + QNu

2(t)]Ez = 0, (8)

Bu(t) + BNu
3(t) = CEz (9)

for constants M, P, Kb, Kp, KN ,B, QN ,BN , and C
defined in “Appendix B”.

Note that the first equation defines the dynamics of
the system and the second equation defines an alge-
braic relation between displacement and the electric
field. From the second equation of motion, we get
an expression for the electric field that has the form
Ez = [Bu(t) + BNu3(t)]/C. Substituting this expres-
sion for electric field into the first equation of motion,
we get

− P z̈(t) = Mü(t) +
[

K + B2

C
]

︸ ︷︷ ︸

K̂

u(t)

+
[

KN + BBN

C + QNB
C

]

︸ ︷︷ ︸

K̂N1

u3(t) + QNBN

C
︸ ︷︷ ︸

K̂N2

u5(t),

− P z̈(t) = Mü(t) + K̂ u(t) + K̂N1u
3(t) + K̂N2u

5(t).

After introducing a viscous damping term for the
representation of energy losses, we have

Mü(t) + Cu̇(t) + K̂ u(t)

+ K̂N1u
3(t) + K̂N2u

5(t) = −P z̈(t).

Let us define the state vector x = {x1, x2}T =
{u, u̇}T . Now, we can write the first-order form of the
governing equations as

{

ẋ1
ẋ2

}

=
[

0 1

− K̂
M − C

M

]

︸ ︷︷ ︸

A

{

x1
x2

}

+
{

0
− P

M

}

︸ ︷︷ ︸

B

z̈(t)
︸︷︷︸

u(t)

+
{

0
1

}

︸︷︷︸

BN

(

− K̂N1

M
x31(t) − K̂N2

M
x51(t)

)

︸ ︷︷ ︸

f (x(t))

, (10)

or

ẋ(t) = Ax(t) + Bu(t) + BN f (x(t)).

Wemake several observations before proceeding to the
adaptive estimation problem treated in the next section.
Note that the specific form of function f (x) = f (x1)
that is given in Eq. 10 has been constructed assuming
the only unknown terms are the nonlinearities arising
from the constitutive laws.We allow for awider class of
uncertainty that can be expressed as f (x) = f (x1, x2).
For instance, if the viscous damping coefficient is
uncertain or unknown, the damping term should be
subsumed into f (x1, x2). With these considerations in
mind, the derivations in the next section are carried
out for the more general case when f = f (x1, x2).
However, when we prepare finite-dimensional approx-
imations in Sect. 3.2 for the simulations in Sects. 4
and 5 , we specialize examples to the case f = f (x1)
described above.

3 Adaptive estimation in RKHS

In this section, we pose the estimation problem for the
approximation of the unknown nonlinear function f
and review the theory of RKHS adaptive estimation.
The governing equation of the plant, the piezoelectric
oscillator modeled in Sect. 2, has the general form

ẋ(t) = Ax(t) + Bu(t) + BN f (x(t)). (11)

We denote the state space of this evolution law by
X = R

d , so that x(t) ∈ X . Under the assumption of
full state observability, the problem of estimation of the
states x(t) at a given time instant t is a classical state
estimation problem. However, the problem of interest
in this paper is the estimation of the unknown function
f . Problemsof this type generally involve the definition
of an estimator system that evolves in parallel with the
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actual plant. The model of the estimator for the plant
defined by Eq. 11 is taken in the form

˙̂x(t) = Ax̂(t) + Bu(t) + BN f̂ (t, x(t)). (12)

In Eq. 12, note that the estimate f̂ of the function f
depends not only on the actual (measured) states x(t)
but also the time t .Wewant the function estimate f̂ (t, ·)
to converge in time to the actual function f (·) in some
suitable function space norm as t → ∞.

In addition to the estimator model, it is also impor-
tant to define the hypothesis space, the space of func-
tions in which the function f and the function esti-
mate f̂ live. In this paper, we assume that the unknown
nonlinear function f lives in the infinite-dimensional
RKHSHX equipped with the reproducing kernelKX :
X × X → R. Recall that the reproducing property of
the kernel states that, for any x ∈ X and f ∈ HX ,
(K(x, ·), f )HX

= f (x). It is well known that the exis-
tence of a reproducing kernel guarantees the bounded-
ness of the evaluation functional Ex : HX → R, which
is defined by the condition thatEx f = (K(x, ·), f )HX .
In this paper, we restrict to RKHS in which the repro-
ducing kernel is bounded by a constant. This implies
that the injection i : HX → C(
) from the RKHS
HX to the space of continuous function on 
, C(
),
is uniformly bounded [60]. This fact is used to prove
the existence and uniqueness of the solution of the error
system.Amore detailed discussion about RKHScan be
found in Aronszajn [72], Berlinet and Thomas-Agnan
[73], Muandet et al. [74].

In addition to the estimator model, we also need an
equation that defines the evolution (time derivative) of
the function estimate. This is given by the learning law

˙̂f (t) = �−1(BNEx(t))
∗P(x(t) − x̂(t)), (13)

where � ∈ R
+, Ex is the evaluation functional at

x ∈ X , and the notation (·)∗ denotes the adjoint of an
operator. Further, the matrix P ∈ R

d×d is the symmet-
ric positive definite solution of theLyapunov’s equation
AT P + PA = −Q, where Q ∈ R

d×d is an arbitrary
but fixed symmetric positive definite matrix.

The existence and uniqueness of a solution for the
estimatormodels given byEqs. 12 and 13 can be proved
under the assumption that the excitation input is con-
tinuous and we are working in an uniformly embed-

dedRKHS asmentioned above. The following theorem
proves this statement.

Theorem 1 Define X := R
d × HX , and suppose that

x ∈ C([0, T ];Rd), u ∈ C([0, T ];R) and that the
embedding i : HX ↪→ C(
) is uniform in the sense
that there is a constant C > 0 such that for any
f ∈ HX ,

‖ f ‖C(
) ≡ ‖i f ‖C(
) ≤ C‖ f ‖HX .

Then for any T > 0, there is a unique mild solution
(x̂, f̂ ) ∈ C([0, T ],X) to

{ ˙̂x(t)
˙̂f (t)

}

=
{

Ax̂(t) + Bu(t) + BNEx(t) f̂ (t)
�−1(BNEx(t))

∗P(x(t) − x̂(t))

}

, (14)

and the map X̂0 ≡ (x̂0, f̂0) �→ (x̂, f̂ ) is Lipschitz
continuous from X to C([0, T ],X).

Proof We set X (t) := (x̂(t), f̂ (t)) ∈ X. Equation 14
can be rewritten as

{ ˙̂x(t)
˙̂f (t)

}

=
[

A 0
0 A0

]

︸ ︷︷ ︸

A

{
x̂(t)
f̂ (t)

}

+
{

Bu(t) + BNEx(t) f̂ (t)
−A0 f̂ (t) + �−1(BNEx(t))

∗P(x(t) − x̂(t))

}

︸ ︷︷ ︸

F(t,X (t))

,

{
x̂(t0)
f̂ (t0)

}

=
{
x̂0
f̂0

}

, (15)

where−A0 is an arbitrary bounded linear operator from
HX toHX . It is clear from the above equation thatA is
a bounded linear operator.We know that every bounded
linear operator is the infinitesimal generator of a C0-
semigroup onX := R

d ×HX (Theorem 1.2, Chapter 1
of Pazy [75]). Now, consider the function F . For each
t ≥ 0, we have

‖F(t, X̂) − F(t, Ŷ )‖
=

∥
∥
∥

{
BNEx(t)( f̂ x̂ (t) − f̂ ŷ (t))

−A0( f̂ x̂ (t) − f̂ ŷ (t)) + �−1(BNEx(t))
∗P(ŷ(t) − x̂(t))

}∥
∥
∥

≤ D‖X̂ − Ŷ‖,

where X̂ := (x̂, f̂ x̂ ), Ŷ := (ŷ, f̂ ŷ), and D ≥ 0 is a
constant. Note that we are able to achieve the above
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1404 S. T. Paruchuri et al.

bound because of uniform boundedness of the evalu-
ation functional Ex(t). Thus, for each t ≥ 0, the map
X̂ �→ F(t, X̂) is uniformly globally Lipschitz contin-
uous. We also note that the map t �→ F(t, X̂) is con-
tinuous for each X̂ ∈ X since u is continuous. Using
Theorem 1.2 in Chapter 6 of Pazy [75], we can con-
clude that the above initial value problem has a unique
mild solution, and the map X̂0 ≡ (x̂0, f̂0) �→ (x̂, f̂ ) is
Lipschitz continuous from X to C([0, T ],X). ��

Suppose that x̃(t) := x(t) − x̂(t) and f̃ (t, ·) :=
f (·) − f̂ (t, ·) denote the state error and the function
error, respectively. Equations 11, 12 and 13 can now be
expressed in terms of the error equation

{ ˙̃x(t)
˙̃f (t)

}

=
[

A BNEx(t)

−�−1(BNEx(t))
∗P 0

]{

x̃(t)
f̃ (t)

}

. (16)

Note, the above equation evolves inRd ×HX . Also,
even though the original Eq. 11 and the estimator Eq. 12
are not the same as in Reference [60], the above error
equation does have the same form as that studied in
Bobade et al. [60]. The existence and uniqueness of a
solution for this equation are given by the following
theorem.

Theorem 2 Define X := R
d × HX , and suppose that

x ∈ C([0, T ];Rd) and that the embedding i : HX ↪→
C(
) is uniform in the sense that there is a constant
C > 0 such that for any f ∈ HX ,

‖ f ‖C(
) ≡ ‖i f ‖C(
) ≤ C‖ f ‖HX .

Then for any T > 0, there is a unique mild solution
(x̃, f̃ ) ∈ C([0, T ],X) to Eq. 16 and the map X0 ≡
(x̃0, f̃0) �→ (x̃, f̃ ) is Lipschitz continuous from X to
C([0, T ],X).

Theproof for this theorem is very similar to the proof
of Theorem 1 and is given in Bobade et al. [60]. Note
that the above theorem does not study the stability nor
the asymptotic stability of the error system. In other
words, the convergence of the state error and the func-
tion error to the origin is not addressed by this theorem.
This aspect is addressed in the following subsection.

3.1 Persistence of excitation

The convergence of state and function errors is guar-
anteed by additional conditions, commonly referred to

as the persistence of excitation (PE) conditions [76–
78]. These have been extended to theRKHS framework
in Guo et al. [79,80]. This section reviews the persis-
tence of excitation conditions for adaptive estimators
on RKHS in detail.

Before taking a look at the PE conditions for the
adaptive estimator in the RKHS, it is important to note
that they are defined over a set 
 ⊆ X . Now, we can
defineH
 := {K(x, ·)|x ∈ 
}. Note thatH
 is a sub-
space of HX . The following definitions give us two
closely related versions of the PE condition on the set

.

Definition 1 (PE. 1) The trajectory x : t �→ x(t) ∈
R
d persistently excites the indexing set 
 and the

RKHS H
 provided there exist positive constants
T0, γ, δ, and 
, such that for each t ≥ T0 and any
g ∈ HX , there exists s ∈ [t, t + 
] such that

∣
∣
∣
∣

∫ s+δ

s
Ex(τ )gdτ

∣
∣
∣
∣
≥ γ ‖�
g‖HX > 0.

Definition 2 (PE. 2) The trajectory x : t �→ x(t) ∈
R
d persistently excites the indexing set 
 and the

RKHS H
 provided there exist positive constants T0,
γ , and 
 such that

∫ t+


t

(

E∗
x(τ )Ex(τ )g, g

)

HX
dτ ≥ γ ‖�
g‖2HX

> 0

for all t ≥ T0 and any g ∈ HX .

In the above definitions, the term �
 represents the
orthogonal projection operator from the RKHS HX to
its subspace H
. Notice that both the PE conditions
are defined on the set 
. It would be ideal if 
 = X ,
the space on which the nonlinear function is defined.
However, in most practical applications, the set 
 is
a subset of the state space X . The following theorem
relates both the PE conditions given above.

Theorem 3 The PE condition in Definition PE. 1
implies the one in Definition PE. 2. Further, if the fam-
ily of functions defined by {g(x(·)) : t �→ g(x(t))|g ∈
HX } is uniformly equicontinuous, then the PE condi-
tion in Definition PE. 2 implies the one in Definition
PE. 1,

With the PE conditions defined, the following theo-
rem addresses the convergence of the states of the error
system to the origin.
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Theorem 4 Suppose the trajectory x : t �→ x(t) per-
sistently excites the RKHSH
 in the sense of Definition
PE. 1. Then the estimation error system in Eq. 16 is uni-
formly asymptotically stable at the origin. In particular,
we have

lim
t→∞ ‖x̃(t)‖ = 0, lim

t→∞ ‖�
 f̃ (t)‖HX = 0.

The proof for this theorem can be found in Guo et al.
[79,80]. Intuitively, the second PE condition implies
that the state trajectory should repeatedly enter every
neighborhood of all the points in the set 
 infinitely
many times. To satisfy this, it makes sense to pick the
set 
 to be the positive limit set ω+(x0) or one of
its subsets. The following theorem from Kurdila et al.
[81] affirms that the persistently excited sets are in fact
contained in the positive limit set.

Theorem 5 Let HX be the RKHS of functions over X
and suppose that this RKHS includes a rich family of
bump functions. If the PE condition in Definition PE. 2
holds for 
, then 
 ⊆ ω+(x0), the positive limit set
corresponding to the initial condition x0.

3.2 Finite-dimensional approximation

As mentioned above, the evolution of the error equa-
tion and the learning law for the RKHS adaptive esti-
mator is inR×HX . In essence, the learning law consti-
tutes a distributed parameter system since f̃ (t) evolves
in a infinite-dimensional space. Thus, to implement
this adaptive estimator, the persistently excited infinite-
dimensional space H
 is approximated by a nested,
dense collection {Hn}n∈N of finite-dimensional sub-
spaces. Recall that even though the particular nonlinear
function f based on the choice of constitutive nonlin-
earities in Eq. 1 is a function f = f (x1), we have
elected to cast the problem in terms of the more gen-
eral nonlinear function f = f (x1, x2). In this section,
wewill continuewith the analysis of finite-dimensional
approximation for the more general unknown nonlin-
ear function f = f (x1, x2), which results in Eqs. 17
and 18. Modifications of these equations to study the
particular case in which f = f (x1) are straightfor-
ward, and we summarize this specific case at the begin-
ning of Sect. 5. We leave the details to the reader.
Let �n represent the projection operator from infinite-
dimensional HX to the finite-dimensional Hn . Now,

the finite-dimensional approximations of the adaptive
estimator equations can be expressed as

˙̂xn(t) = Ax̂n(t) + Bu(t) + BNEx(t)�
∗
n f̂n(t), (17)

˙̂fn(t) = �−1 (BNEx(t)�
∗
n

)∗
P x̃n(t), (18)

where x̃n := x − x̂n .

Theorem 6 Suppose that x ∈ C([0, T ],Rd) and that
the embedding i : HX ↪→ C(
) is uniform in the sense
that

‖ f ‖C(
) ≡ ‖i f ‖C(
) ≤ C‖ f ‖HX .

Then for any T > 0,

‖x̂ − x̂n‖C([0,T ];Rd ) → 0,

‖ f̂ − f̂n‖C([0,T ];Rd ) → 0,

as n → ∞.

The proof of the above theorem can be found in
Bobade et al. [60]. As noted earlier, the estimator equa-
tions considered in Bobade et al. [60] are different from
the ones considered in this paper. However, the error
equations for x̂ − x̂n and f̂ − f̂n still have the same
form as in Bobade et al. [60], and the proof of the above
theorem will remain the same.

4 RKHS adaptive estimator implementation

The previous section discussed the theory behind esti-
mators that evolve in an RKHS. This section presents
the algorithm for the implementation of the theory. Fig-
ure 2 shows the block diagramof the adaptive estimator.
The actualmodel shown in the figure corresponds to the
true system excited by the input , and we assume that
we can measure all the states x(t) of this true system.
The estimator and learning law blocks in the diagram
are what we implement on the computer. Let us first
take a look at the estimator model. The operator �∗

n
in the estimator model is the adjoint of the orthogo-
nal projection/approximation operator �n . It is equiv-
alent to the inclusion map that maps an element ofHn

space to the same element in the HX space. Thus, the
term Ex(t)�∗

n f̂n(t) in the estimator model is the same
as Ex(t) f̂n(t) = f̂n(t, x(t)).
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1406 S. T. Paruchuri et al.

Fig. 2 Adaptive parameter
estimator block diagram

Now, let us take a look at the learning law given
in Eq. 18. It is a derivative of a function, and we can-
not directly implement it on a computer. To convert
it to a form that is solvable using numerical meth-
ods, we take the inner product of the learning law with
K(xi , ·). Before proceeding with this step, let us recall
that the finite-dimensional function estimate f̂n(t, ·)
can be expressed as f̂n(t, ·) = ∑n

j=1 α̂ j (t)K(x j , ·) =
α̂
T
(t)K(xc, ·). Thus, for i = 1, . . . , n,

(

K(xi , ·), ˙̂fn(t)
)

HX

=
(

K(xi , ·), �−1 (BNEx(t)�
∗
n

)∗
P x̃n(t)

)

HX
,

which implies

n
∑

j=1

K(xi , x j ) ˙̂α j (t)

= �−1 (BNEx(t)K(xi , ·), P x̃n(t)
)

HX
.

Thus, if α̂(t) := {α̂1(t), . . . , α̂n(t)}T , its time deriva-
tive is given by the expression

˙̂α(t) = K
−1�−1K(xc, x(t))B∗

N P x̃n(t),

where K is the symmetric positive definite Gram-
mian matrix whose i j th element is defined as Ki j :=
K(xi , x j ), � := �In is the gain matrix, and

K(xc, x(t)) := {K(x1, x(t)), . . . ,K(xn, x(t))
}T

.

The above equation gives us an expression for the
rate at which the coefficients of the kernels change with

time. Therefore, the implementation of the adaptive
estimator amounts to integration of the equations

˙̂xn(t) = Ax̂n(t) + Bu(t) + BN α̂
T
(t)K(xc, x(t)),

(19)

˙̂α(t) = K
−1�−1K(xc, x(t))B∗

N P x̃n(t). (20)

From the discussion in Sect. 3.1, it is clear that the
persistence of excitation is sufficient to ensure param-
eter convergence. However, it is hard and sometimes
impossible to check if a given space is persistently
exciting. The following theorem from Kurdila et al.
[82] gives us a sufficient condition for the persistence of
excitation that is easy to verify. However, this theorem
is only applicable to cases where radial basis functions
overRd generate the RKHS. Furthermore, we can only
use this sufficient condition to check the persistence of
excitation of finite-dimensional spaces. However, since
all implementation is in the finite-dimensional spaces,
the following theorem provides us a powerful tool to
verify the convergence of parameters in practical appli-
cations.

Theorem 7 Let ε < 1
2 mini �= j ‖xi − x j‖, where xi

and x j are the kernel centers {x1, . . . , xn}. For every
t0 ≥ 0 and δ > 0, define

Ii = {t ∈ [t0, t0 + δ] : ‖x(t) − xi‖ ≤ ε}.

If there exists a δ such that the measure of Ii is bounded
below by a positive constant that is independent of t0
and the kernel center xi , and if themeasure of [t0, t0+δ]
less than or equal to δ, then the spaceHn is persistently
exciting in the sense of Definition PE. 2.

123



RKHS estimation of nonlinear piezos 1407

We have to note that the persistence of excita-
tion of Hn does not imply the convergence of error
to 0 since the function f belongs to the infinite-
dimensional spaceHX . However, it can be shown that

limsubt→∞
∥
∥
∥�n

(

f − f̂n(t)
)∥
∥
∥HX

is bounded above

by a positive constant when, for any t , the function
(

f − f̂n(t)
)

belongs to a family of uniformly equicon-

tinuous functions and x is uniformly continuous. We
refer the reader to Kurdilaet al: [82] for a more detailed
discussion on the convergence of parameters in finite-
dimensional spaces.

The following algorithm gives a step-by-step proce-
dure for implementing the RKHS adaptive estimator.

Algorithm 1: RKHS adaptive estimator imple-
mentation
Input: x(t),w+(x0)
Output: f̂n(T, ·)

1 Choose the RKHS HX and the corresponding reproducing
kernel K(·, ·).

2 Choose kernel centers xi , for i = 1, . . . , N uniformly
distributed on w+(x0),
if X is equal to the state space, choose kernels centers on
w+(x0),
if X is a proper subset of the state space, choose kernel
centers on the projection of w+(x0) on to the space X .

3 Run the adaptive estimator until the parameters converge.
Integrate

˙̂xn(t) = Ax̂n(t) + Bu(t) + BN α̂
T
(t)K(xc, x(t)),

˙̂α(t) = K
−1�−1K(xc, x(t))B∗

N P x̃n(t)

over the interval [0, T ].
4 Define f̂n(T, ·) := α̂

T
(T )K(xc, ·).

5 Numerical simulation results

In this section, we consider the prototypical piezoelec-
tric oscillator example modeled in Sect. 2 to study
the effectiveness of an RKHS adaptive estimator and
make qualitative studies of convergence. As empha-
sized above, the finite-dimensional Eqs. 17 and 18 are
stated for the general analysis when the unknown func-
tion f = f (x1, x2). In this section, we study quali-
tative convergence properties in the specific case that
f = f (x1). For this specific example, it is straight-

Table 1 Piezoceramic parameters used in simulations

Parameter Value

Piezoceramic (PIC 151) ρp 7790 (kg/m3)

h p 0.001 (m)

a 0

b l

d31,0 −2.1e−10 (m/V)

d31,1 −36.9746 (m/V)

d31,2 −0.03596 (m/V)

Ep0 0.667e+11 (Pa)

Ep1 −3.328e−12 (Pa)

Ep2 −1.4e+18 (Pa)

ε33 2.12e−8 (F/m)

forward to show that the finite-dimensional equations
have the form

˙̂xn(t) = Ax̂n(t) + Bu(t) + BNEx1(t)�∗
n f̂n(t),

˙̂fn(t) = �−1 (BNEx1(t)�∗
n

)∗
P x̃n(t).

These equations evolve in Rd × Hn , where

Hn = span{K(x1,i , ·)}
is defined in terms of the kernel on R,K : R×R → R

and displacement samples xc = {x1,i }ni=1 = 
n ⊆

 ⊆ R. With this interpretation and the definition
K(xc, x(t)) := {K(x1,1, x1(t)), . . . ,K(x1,n, x1(t))}T ,
the specific governing equations still have the form
shown in Eqs. 19, 20, andAlgorithm 4 applies. Tables 1
and 2 list the numerical values of the parameters used
to build the actual model shown in Eq. 10. We used
the shape function corresponding to the first cantilever
beam mode while modeling the system to get Eqs. 8
and 9 . Table 2 also shows the input used to drive the
actual system.

Figure 3 shows the steady-state response of the
actual piezoelectric system. This figure gives us an esti-
mate of maximum and minimum displacement. Under
the assumption that the unknown nonlinear term is a
function of displacement only, it is clear that the set

 ⊆ R. For this problem, the set 
 is the closed inter-
val from minimum displacement to the maximum dis-
placement. For the adaptive estimator, the reproducing
kernel implemented in the simulation was selected to
be the popular exponential function
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Table 2 Other parameters of the actual system used in simula-
tions

Parameter Value

Substrate Material St 37

ρb 7800 (kg/m3)

Cb 2.089e+11 (Pa)

l 0.4 (m)

b 0.025 (m)

h 0.003 (m)

Damping α 0.1

β 1e-3

Input u(t) A sin(ωt)

Amplitude A 1 (m/s2)

Frequency ω 22.5 (rad/s)

Fig. 3 The trajectory in the phase plane starting at [0, 0]T even-
tually converges to the steady-state set

K(x, y) = e− ||x−y||2
2σ2 .

Thus, H
 is the set defined as

H
 := {K(x, ·) = e− ||x−·||2
2σ2 |x ∈ 
 ⊆ R},

where σ is the standard deviation of the radial basis
function. For the simulations, we used σ = 1e− 9. As

Fig. 4 Radial basis functions centered at equidistant points in


Fig. 5 Evolution of state error with time

shown in Fig. 4, a total of 24 equidistant points were
chosen in the interval
 = [−0.00037018, 0.00037026]
and the kernel functions were centered at these points.
It is clear from the state-state trajectory in Fig. 3 that the
hypotheses for the sufficient condition given in Theo-
rem 7 are satisfied.

Figure 5 shows the time history of the state errors.
As expected, the state errors eventually converge to
zero. Figure 6 shows the final 500-time-steps of the
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Fig. 6 Actual states and state estimate—final 500 timesteps

Fig. 7 Actual states and state estimates in phase plane after
convergence of state error

actual states and the estimated states. Figure 7 shows
the corresponding phase plot. It is clear from these plots
that the estimator tracks the actual states with almost
no error.

Figures 8, 9, 10 and 11 show the evolution of the
parameters. It is clear from thefigures that the estimated
parameters converge to a constant as time t → ∞.

The plot of the actual function f and estimated func-
tion f̂i evaluated onR can be seen in Fig. 12. Figure 13

Fig. 8 Evolution of the parameter estimates α̂1 − α̂6 with time

Fig. 9 Evolution of the parameter estimates α̂7 − α̂12 with time

shows the pointwise error between the actual and esti-
mated functions. The figures show that the actual and
estimated functions agree on 
. Recall that conver-
gence of the function error is guaranteed on the set

 in the norm on HX essentially. This amounts to a
guarantee of the pointwise error over the set 
. No
guarantee is made for values outside 
. See [79–81]
for more details on the convergence.

6 Conclusion

This paper has introduced a novel approach to model
and estimate uncertain nonlinear piezoelectric oscilla-
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Fig. 10 Evolution of the parameter estimates α̂13 − α̂18 with
time

Fig. 11 Evolution of the parameter estimates α̂19 − α̂24 with
time

tors, and the effectiveness of the approach has been val-
idated by testing it on a nonlinear piezoelectric bimorph
beam. The nonlinear function used in the numerical
study depended only on the displacement, but much
of the theory applies to more complex uncertainties.
It would be of interest to study the effectiveness of
such estimators on more complex oscillators, ones for
which unknown nonlinearities depend on all the states.
The algorithm discussed in this paper follows a gen-
eral framework and can be adapted easily to model
many other nonlinearities. Robustness of the current
algorithm and its effectiveness in the presence of noise

Fig. 12 Actual function and function estimate on R

Fig. 13 Error between actual function and function estimate on
R

would be of great interest and remains to be explored
and would complement the findings in the current
study.
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A Piezoelectric oscillator—governing equations

In this section, we go over the detailed steps involved
in the derivation of the infinite-dimensional govern-
ing equation of the piezoelectric oscillator as shown in
Fig. 1. The kinetic energy and the electric potential are
given by Eqs. 3 and 5, respectively. Using Hamilton’s
principle, we get the variational identity

δ

∫ t1

t0
(T − VH)dt

= δ

∫ t1

t0

{[
1

2
m

∫ l

0
(ẇ + ż)2dx

]

−
[
1

2
Cb Ib

∫ l

0
(w′′)2dx + 2a(0,2)

∫ b

a
(w′′)2dx

+ 2a(2,4)

∫ b

a
(w′′)4dx + 2b(1,1)

[∫ b

a
w′′dx

]

Ez

+2b(3,1)

[∫ b

a
(w′′)3dx

]

Ez − 2b(0,2)E
2
z

]}

dt = 0.

(21)

The above variational statement can be rewritten as

δ

∫ t1

t0
(T − VH)dt =

∫ t1

t0

{∫ l

0
mẇδẇ + mżδẇ)dx

−
∫ l

0
Cb Ibw

′′δw′′dx − 4a(0,2)

∫ b

a
w′′δw′′dx

− 8a(2,4)

∫ b

a
(w′′)3δw′′dx − 2b(1,1)

(∫ b

a
(δw′′)dx

)

Ez

− 2b(1,1)

(∫ b

a
w′′dx

)

δEz

− 6b(3,1)

(∫ b

a
(w′′)2δw′′dx

)

Ez

− 2b(3,1)

(∫ b

a
(w′′)3dx

)

δEz

+ 4b(0,2)EzδEz
}

dt = 0 (22)

After integrating the above statement by parts, we
get

∫ t1

t0

{

−
∫ l

0

[

mẅ + mz̈ + Cb Ibw
′′′′

+ 4a(0,2)
(

χ[a,b]w′′)′′ + 8a(2,4)(χ[a,b](w′′)3)′′

+ 2b(1,1)χ
′′[a,b]Ez + 6b(3,1)(χ[a,b](w′′)2)′′Ez

]

δwdx

−
[

2b(1,1)

(∫ l

0
χ[a,b]w′′dx

)

+2b(3,1)

(∫ l

0
χ[a,b](w′′)3dx

)

− 4b(0,2)Ez

]

δEz

−
{

Cb Ibw
′′ + 4a(0,2)χ[a,b]w′′ + 8a(2,4)χ[a,b](w′′)3

+2b(1,1)χ[a,b]Ez + 6b(3,1)χ[a,b](w′′)2
}

δw′∣∣l
0

+
{

Cb Ibw
′′′ + 4a(0,2)

(

χ[a,b]w′′)′

+8a(2,4)

(

χ[a,b](w′′)3
)′

+2b(1,1)χ
′[a,b]Ez + 6b(3,1)

(

χ[a,b](w′′)2
)′}

δw

∣
∣
∣
∣

l

0

}

dt = 0.

Note, in the above statement, the termχ[a,b] is called
the characteristic function of [a, b] and is defined as

χ[a,b](x) :=
{

1 if x ∈ [a, b],
0 if x /∈ [a, b]. (23)

Since the variation ofw and Ez are arbitrary, we can
conclude that the equations of motion of the nonlin-
ear piezoelectric cantilevered bimorph have the form
shown in Eqs. 6 and 7.

B Single mode approximation of the piezoelectric
oscillator equations

As mentioned earlier, the effects of nonlinearity in
piezoelectric oscillators are most noticeable near the
natural frequency of the system. Hence, single-mode
models are sufficient to model the dynamics as long
as the range of input excitation is restricted to a band
around the first natural frequency. Let us introduce the
single-mode approximation w(x, t) = ψ(x)u(t). To
make calculations easier, let us introduce this approxi-
mation into the variational statement shown in Eq. 22.
Further, note that

∫ t1

t0

∫ l

0
mẇδẇdxdt = −

∫ t1

t0

∫ l

0
mẅδwdxdt,

∫ t1

t0

∫ l

0
mżδẇdxdt = −

∫ t1

t0

∫ l

0
mz̈δwdxdt.
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After introducing the approximation forw(x, t) into
the variational statement in Eq. 22 and using the equa-
tions shown above, we get the variational statement

0 =
∫ t1

t0

{

−
[

m

(∫ l

0
ψ2(x)dx

)

ü + m

(∫ l

0
ψ(x)dx

)

z̈

+ Cb Ib

(∫ l

0

(

ψ ′′(x)
)2 dx

)

u

+ 4a(0,2)

(∫ l

0
χ[a,b]

(

ψ ′′(x)
)2
)

u

+ 8a(2,4)

(∫ l

0
χ[a,b]

(

ψ ′′(x)
)4 dx

)

u3

+ 2b(1,1)Ez

(∫ l

0
χ[a,b]ψ ′′(x)dx

)

+ 6b(3,1)

(∫ l

0
χ[a,b]

(

ψ ′′(x)
)3
)

u2Ez

]

δu

−
[

2b(1,1)

(∫ l

0
χ[a,b]ψ ′′(x)dx

)

u

+ 2b(3,1)

(∫ l

0
χ[a,b]

(

ψ ′′(x)
)3
)

u3

− 4b(0,2)Ez

]

δEz

}

dt

Thus, the approximated equation of motion are

m

(∫ l

0
ψ2(x)dx

)

︸ ︷︷ ︸

M

ü + m

(∫ l

0
ψ(x)dx

)

︸ ︷︷ ︸

P

z̈

+ Cb Ib

(∫ l

0

(

ψ ′′(x)
)2 dx

)

︸ ︷︷ ︸

Kb

u

+ 4a(0,2)

(∫ l

0
χ[a,b]

(

ψ ′′(x)
)2
)

︸ ︷︷ ︸

Kp

u

+ 8a(2,4)

(∫ l

0
χ[a,b]

(

ψ ′′(x)
)4 dx

)

︸ ︷︷ ︸

KN

u3

+ 2b(1,1)

(∫ l

0
χ[a,b]ψ ′′(x)dx

)

︸ ︷︷ ︸

B

Ez

+ 6b(3,1)

(∫ l

0
χ[a,b]

(

ψ ′′(x)
)3
)

︸ ︷︷ ︸

QN

u2Ez = 0,

2b(1,1)

(∫ l

0
χ[a,b]ψ ′′(x)dx

)

︸ ︷︷ ︸

B

u(t)

+ 2b(3,1)

(∫ l

0
χ[a,b]

(

ψ ′′(x)
)3
)

︸ ︷︷ ︸

BN

u3(t) = 4b(0,2)
︸ ︷︷ ︸

C
Ez .

These calculations generate the approximated Eqs. 8
and 9.
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