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Summary
The performance of adaptive estimators that employ embedding in reproduc-
ing kernel Hilbert spaces (RKHS) depends on the choice of the location of basis
kernel centers. Parameter convergence and error approximation rates depend
on where and how the kernel centers are distributed in the state-space. In this
article, we develop the theory that relates parameter convergence and approxi-
mation rates to the position of kernel centers. We develop criteria for choosing
kernel centers in a specific class of systems by exploiting the fact that the state
trajectory regularly visits the neighborhood of the positive limit set. Two algo-
rithms, based on centroidal Voronoi tessellations and Kohonen self-organizing
maps, are derived to choose kernel centers in the RKHS embedding method.
Finally, we implement these methods on two practical examples and test their
effectiveness.
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1 INTRODUCTION

Adaptive estimation of unknown nonlinearities appearing in dynamical systems is a topic that has been studied over
the past four decades. The finite-dimensional versions of such problems are described in classical texts like References
1-3. These methods aim to estimate unknown terms appearing in the governing ordinary differential equations (ODEs).
A common assumption in such problems is that all the states are available for measurement. Many of these methods
also assume that the unknown function belongs to some hypothesis space of functions. The particular class of adaptive
estimators studied in this article assumes that the hypothesis space is a reproducing kernel Hilbert space (RKHS). An
RKHSX is a Hilbert space of functions on the state-space X = Rd that is defined in terms of a symmetric, positive-definite
kernel ∶ Rd ×Rd → R, which satisfies the reproducing property: for all x ∈ X and f ∈ X , ((x, ⋅), f )X = xf = f (x).4,5

An example of an RKHS is the space generated by the Gaussian radial basis kernels that have the form(x, y) ∶= e−𝜁 ||x−y||2 ,
where 𝜁 is positive. The additional structure induced by the kernel  on Rd enables the proof of crucial convergence
results, even for the infinite-dimensional cases. The finite-dimensional version of the RKHS adaptive estimators has been
studied by authors of References 6,7. However, the results for the infinite-dimensional adaptive estimation cases are new
and were initially investigated by Bobade et al. in Reference 8.

In both the finite and infinite-dimensional cases, the unknown function f is assumed to be an element of the RKHSX .
In adaptive estimation techniques, a function estimate ̂f (t, ⋅) is constructed. The goal is to develop a learning law (an ODE
in the case of finite-dimensions or a distributed parameter system (DPS) in the case of infinite-dimensions) that defines
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the evolution of the function estimate ̂f (t, ⋅) such that it approaches the actual function f as t → ∞. Note that as opposed
to static learning theory, the estimate here is governed by a dynamical system. In the finite-dimensional case, the function
estimate has the form ̂f (t, ⋅) =

∑
i 𝛼i(t)𝔎xi(⋅), where 𝔎xi (⋅) ∶= (xi, ⋅) with xi ∈ Rd. We refer to 𝔎xi ∈  as the kernel

function centered at xi. In the RKHS literature, 𝔎xi is referred to as the kernel section of . In the infinite-dimensional
case, to enable practical implementation, the function estimate ̂f (t, ⋅) is approximated by a finite-dimensional estimate of
the form ̂f n(t, ⋅) =

∑n
i=1𝛼i(t)𝔎xi(⋅). Since the infinite-dimensional learning law cannot be solved numerically, the evolution

of the approximated finite-dimensional estimate is determined by integrating an approximate learning law (an ODE).
In both finite- and infinite-dimensional RKHS based adaptive estimation techniques, the choice of the kernel centers xi
affect the convergence of the function estimate to the actual function.

The general problem of kernel center selection is familiar in adaptive estimation, dynamical system identification,
and control. Though some of the studies in these fields do not explicitly deal with kernel center selection, the center
adaptation or the kernel adaptation problems are often indirectly addressed to improve performance. For instance, Lian
et al. develop a self-organizing RBF network that tunes the RBF network parameters based on an adaptation law.9 They
use this method for real-time approximation of dynamical systems. Han et al. describe a version of self-organizing RBF
networks that use a growing and pruning algorithm in Reference 10. They illustrate the effectiveness of such networks
and their variants for dynamical system identification and model predictive control.11-14 Sanner and Slotine implement
Gaussian networks for direct adaptive control in Reference 15. The neuro-control technique discussed in References 16,17
uses a fixed set of basis functions or kernel centers. On the other hand, in the controller using neural networks proposed
in Reference 18, the kernel centers are chosen such that linear independence of𝔎xi is maintained. As per the algorithm
given in Reference 19, the kernel parameters are chosen to approximate the nonlinear inversion error over a compact
set. Reference 20 presents the advantages of adapting the kernel parameters and presents a theory for static as well as
dynamic problems.

In conventional system identification techniques, parameter convergence is not always guaranteed. In adaptive esti-
mation, we ordinarily use sufficient conditions, referred to as persistence of excitation (PE) conditions, to ensure parameter
convergence.1-3 In most practical cases, the PE conditions are difficult to ensure a priori. They often do not play a con-
structive role in coming up with practical algorithms. For this reason, several authors have studied adaptive estimation
methods which ensure parameter convergence without PE. In Reference 21, Chowdhary and Johnson show that if the
chosen regressors evaluated at measured data are linearly independent, then we get parameter convergence. Kamala-
purkar et al. extended this work in Reference 22 to relax the assumptions and developed a concurrent learning technique
that implements a dynamic state-derivative estimator. Kingravi et al. in Reference 7 propose a real-time regressors update
algorithm that uses the regressors linear independence test. In Reference 23, Modares et al. show that parameter conver-
gence can be ensured by checking for linear independence of the filtered regressor. An alternative class of methods uses
Gaussian processes for adaptive estimation and adaptive control.24-27 In these methods, the kernel centers are chosen
at the points corresponding to the measured output data. An introduction to this theory with examples is given in
Reference 28.

The conventional PE condition is linked to the richness of the regressor functions that are used to represent the
unknown function. As mentioned earlier, such a notion is hard to interpret intuitively. However, in the RKHS embed-
ding method, the modified PE conditions, studied in References 29,30, are directly related to the kernel center positions
in the state-space. Studies on PE in RKHS show that only the kernel centers regularly visited by the state trajectory are
persistently excited.6,31 Such a relationship makes it easier to ensure PE in RKHS for a certain class of dynamical systems.
Furthermore, recent results have shown that the persistently exciting sets are contained in the positive limit sets for a
particular class of RKHS adaptive estimators.32 These results clearly show us that the kernel centers play a crucial role in
PE and the parameter convergence in RKHS based adaptive estimators.

Moreover, the results in Reference 33 establish that the accuracy of the RKHS embedding method can be shown
to depend on the fill distance of samples in a manifold. As the fill distance decreases to zero, the finite-dimensional
approximation of function estimate ̂f n(t, ⋅) converges to the infinite-dimensional function estimate ̂f (t, ⋅). At the same
time, it is also known that the condition number of the Grammian matrix that must be inverted to implement the RKHS
embedding method is bounded below by the minimal separation of samples that define the space of approximants. These
two observations suggest that strategies to control the distribution of kernel centers in practical simulations are needed.

The kernel center selection and adaptation techniques cited above do not explicitly consider these issues. The princi-
pal goal of this article is first to develop a set of intuitive criteria for kernel center selection based on the theory of adaptive
estimation in RKHS. The second principal goal of this article is to develop two kernel center selection algorithms that
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satisfy these criteria for certain classes of nonlinear systems. These algorithms apply to systems in which the neighbor-
hoods of points in the positive limit sets are visited regularly by the state trajectory and are designed to be applied a priori
to starting the RKHS based adaptive estimator. In the limited literature on adaptive estimation by RKHS embedding,
such algorithms are yet to be explored to the best of the authors’ knowledge. The first algorithm is based on constructing
centroidal Voronoi tessellations (CVT) of a polygon surrounding the measured data. The second approach is based on
Kohonen self-organizing maps. The advantages of these methods are as follows:

1. These algorithms choose kernel centers directly from the state-space. Such methods work for a large class of regressor
functions or types of kernels that define the RKHS.

2. We do not need explicit equations for the persistently exciting sets, which is the case in most practical applications. It
is hard to pick evenly distributed kernel centers in the persistently exciting set without such knowledge.

3. There is commercially available software for computing CVT and Kohonen self-organizing maps. This makes both
methods simple to implement.

We organize the sections in this article as follows. In Section 2, we present the theory of adaptive estimation in
infinite-dimensional RKHS and basic properties of persistence of excitation. We first prove that the infinite-dimensional
PE condition implies uniform convergence of the parameter error in the PE sets (Corollary 1). This proof strengthens
the results in References 29,30 in that it provides an intuitive insight into the implications of the PE condition in the
infinite-dimensional RKHS embedding method. We also discuss the relation between the approximation rates and dis-
tribution of samples in the state-space. Finally, we develop a set of kernel center selection criteria based on the discussed
theory and illustrate the effectiveness of the criteria using an example. In Section 3, we present the first method and the-
ory of CVT-based kernel center selection. We also prove theorems on convergence in this section. Section 4 presents the
method based on Kohonen self-organizing maps. Finally, we present two examples that illustrate the effectiveness of both
methods in Section 5.

2 RKHS EMBEDDING FOR ADAPTIVE ESTIMATION

This section aims to present the idea of RKHS based adaptive estimation rigorously and develop criteria for kernel center
selection based on the theory.

2.1 Reproducing kernel Hilbert space

A reproducing kernel Hilbert space X is a Hilbert space associated with a symmetric, positive-definite kernel  ∶
X × X → R. See References 4,5 for axiomatic definitions of what constitutes an admissible kernel. The kernel satisfies
two properties, (1) (x, ⋅) ∈  for all x ∈ X , and (2) the reproducing property: for all x ∈ X and f ∈ X , ((x, ⋅), f )X =
xf = f (x). Here, the notation (⋅, ⋅)X denotes the inner product associated with the Hilbert spaceX . The term x is the
evaluation functional, which is a bounded linear operator. Throughout this article, we consider RKHS generated by ker-
nels which satisfy the condition that(x, x) ≤ k

2
< ∞. This condition implies that the RKHS is continuously embedded

in the space of continuous functions C(X).8 As a result of this assumption, we can extend some convergence in RKHS
results to uniform convergence over compact subsets of X . Many reproducing kernels used in practice satisfy the above
condition. Given a positive-definite kernel, the RKHSX is generated by

X ∶= span{(x, ⋅)|x ∈ X}.

Note that if the set X is infinite-dimensional, then the RKHS it generates is also infinite-dimensional. Given a subset
Ω ⊆ X , we define the associated RKHSΩ ⊆ X by

Ω ∶= span{(x, ⋅)|x ∈ Ω}.

The above-mentioned reproducing property endows the RKHS with a structure that makes many calculations easy. A
detailed list of properties of RKHS can be found in References 4,5. In this article, we are particularly interested in the
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PARUCHURI et al. 1565

properties of projection operators that act on an RKHS. We let PΩ be the X orthogonal projection operator PΩ ∶ X →
Ω. From Hilbert space theory, we know that the operator PΩ decomposes the Hilbert space X into Ω

⨁
Ω, where

Ω is the space of elements orthogonal to the elements of the spaceΩ. Since the spaceX is an RKHS, the reproducing
property implies that for any h ∈ Ω, we have h(x) = 0 for all x ∈ Ω. Another important property we use in this article is
that for any discrete finite set Ωn, the projection operator PΩn coincides with the interpolation operator over Ωn, that is,
for all h ∈ X , and x ∈ Ωn, we have h(x) = (PΩn h)(x).34

2.2 Adaptive estimation in RKHS

Consider a nonlinear system governed by the ODE

ẋ(t) = Ax(t) + Bf (x(t)),

where x(t) ∈ Rd is the state, A ∈ Rd×d is a known Hurwitz matrix, B ∈ Rd is a known vector and f ∶ Rd → R is the
unknown (nonlinear) function. Note, if the original system equations do not contain the term Ax(t), we can add and sub-
tract a known Hurwitz matrix and redefine the unknown nonlinear function to have the form shown above. As noted in
Reference 8 and discussed in more detail there, more general systems can be addressed in the analysis that follows via
analogy to the model problem above.

We assume that the unknown function f lives in the RKHSX , where X = Rd is the state-space of the system. In other
words, we assume that the unknown f has the form f (⋅) =

∑
i∈I
𝛼ixi (⋅) for some {xi}i∈I with I either finite or infinite. We

now define an estimator model of the form

̇x̂(t) = Ax̂(t) + B̂f (t, x(t)),

where x̂(t) ∈ Rd is the state estimate and ̂f (t, x(t)) is the function estimate. For each t, the function estimate ̂f (t) is an
element of the spaceX . In this article, we assume full-state measurement. This assumption allows us to define a function
estimate ̂f (t) that depends on the actual states x(t). Note that the function estimate also explicitly depends on the time t.
The goal of adaptive estimation is to ensure that ̂f (t) → f as t →∞. To achieve this, we define the evolution of the function
estimate by the learning law

̇
̂f (t) = Γ−1(Bx(t))∗P(x(t) − x̂(t)),

where Γ ∈ R, Γ > 0.8,29,30 The notation (⋅)∗ represents the adjoint of an operator. Additionally, the term P is a symmetric
positive-definite matrix in Rd×d that solves the Lyapunov equation ATP + PA = −Q, where Q ∈ Rd×d is an arbitrarily
chosen symmetric positive-definite matrix.

If we define the state and function errors as x̃(t) ∶= x(t) − x̂(t) and ̃f (t) ∶= f − ̂f (t), the error evolution equations can
be expressed as

{
̇x̃(t)
̇
̃f (t)

}

=

[
A Bx(t)

− Γ−1(Bx(t))∗P 0

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

A(t)

{
x̃(t)
̃f (t)

}

. (1)

Note, in the above error equation, the term A(t) is a uniformly bounded linear operator, and the states
{

x̃(t) ̃f (t)
}T

evolve in the infinite-dimensional space Rd ×X . Thus, the structure of the RKHS enables us to pose the nonlinear
finite-dimensional estimation problem into a linear infinite-dimensional problem.

Standard stability analysis using the Lyapunov’s theorem and Barbalat’s lemma shows that the norm of the state error
||x̃(t)||Rd → 0 as t → ∞.8,29,30 However, we need persistence of excitation conditions to prove convergence of the function
error. The following subsection covers this.

 10991115, 2022, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/acs.3407 by L

ehigh U
niversity L

inderm
an L

ib, W
iley O

nline L
ibrary on [12/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1566 PARUCHURI et al.

2.3 Parameter convergence, PE and positive limit sets

As mentioned earlier, persistence of excitation (PE) conditions are used to prove convergence of the function estimate to
the actual function. Two different definitions of PE in RKHS are available in the recent literature on RKHS embedding
methods.29,30 They are as follows.

Definition 1 (PE. 1). The trajectory x ∶ t → x(t) ∈ Rd persistently excites the indexing setΩ and the RKHSΩ provided
there exist positive constants T0, 𝛾, 𝛿, and Δ, such that for each t ≥ T0 and any g ∈ X , there exists s ∈ [t, t + Δ] such that

|
|
|
|
|
∫

s+𝛿

s
x(𝜏)gd𝜏

|
|
|
|
|

≥ 𝛾||PΩg||X > 0.

Definition 2 (PE. 2). The trajectory x ∶ t → x(t) ∈ Rd persistently excites the indexing setΩ and the RKHSΩ provided
there exist positive constants T0, 𝛾 , and Δ such that

∫

t+Δ

t

(


∗
x(𝜏)x(𝜏)g, g

)

X

d𝜏 ≥ 𝛾||PΩg||2
X
> 0,

for all t ≥ T0 and any g ∈ X .

Note that the PE condition given in Definition 2 structurally resembles the classical PE conditions defined using regres-
sors in finite-dimensional spaces.1-3 Recall that the term PΩ in the above definitions is the orthogonal projection operator
that maps elements fromX toΩ. The following theorem is a special case of the results from References 29,30 and shows
how these two PE conditions are related. Note that the notion of parameter convergence in the infinite-dimensional case
is given with respect to PE condition in Definition 1 only.

Theorem 1 (29,30). The PE condition in Definition PE. 1 implies the one in Definition PE. 2. Further, if Ω is a discrete
finite set, the state trajectory t → x(t) is uniformly continuous and maps to a compact set, and the family of functions defined
by {g(x(⋅)) ∶ t → g(x(t))|g ∈ X , ||g|| = 1} is uniformly equicontinuous, then the PE condition in Definition PE. 2 implies the
one in Definition PE. 1.

Furthermore, if the trajectory x ∶ t → x(t) persistently excites the RKHSΩ in the sense of Definition PE. 1. Then

lim
t→∞

||x̃(t)|| = 0, lim
t→∞

||PΩ ̃f (t)||X = 0.

We can view the term PΩ ̃f (t) as an element of the spaceΩ. Thus, the above statement implies that PΩ ̃f (t) converges
to the zero element in the Ω space. However, this statement does not imply the convergence or even the existence of
the limit of ̃f (t) ∈ X . The statement limt→∞ ||PΩ ̃f (t)||X = 0 is hard to interpret intuitively. The following corollary of the
above theorem gives us the intuition about where the convergence is achieved.

Corollary 1. If the trajectory x ∶ t → x(t) persistently excites the set Ω and the RKHS Ω in the sense of Definition PE. 1,
then ̂f (t) converges uniformly to f on the set Ω as t →∞.

Proof. Suppose the projection operator PΩ decomposes the function ̃f (t) into ̃f (t) = PΩ ̃f (t) + v(t), where PΩ(̃f (t)) ∈ Ω and
v(t) ∈ Ω. Since v(t, x) = 0 for all x ∈ Ω, we have ̃f (t) = PΩ ̃f (t, x). Thus, for all x ∈ Ω, we have

|̃f (t, x)| = |PΩ ̃f (t, x)| = |xPΩ ̃f (t)| ≤ ||x||||PΩ ̃f (t)||X .

But we have assumed in this article that the kernel  that induces X satisfies (x, x) ≤ k
2
< ∞ for all x ∈ X . Since

the evaluation functional is consequently uniformly bounded, the above inequality holds for all x ∈ Ω. Taking the limit
t → ∞ and using Theorem 1 gives us the desired result. ▪

The above corollary clearly shows that, if the PE condition holds and the kernel satisfies (x, x) ≤ k
2
<∞, then

̂f (t, x) → f (x) for all x ∈ Ω. Now, we can ask the question of where to look for persistently exciting sets in the state space.
Theorem 2 from Reference 32, which is given below, answers this question. The theorem assumes that the RKHS space
separates closed sets.
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PARUCHURI et al. 1567

Definition 3. We say the RKHSX separates a set A ⊆ X if for each b ∉ A, there is a function f ∈ X such that f (a) = 0
for all a ∈ A and f (b) ≠ 0.

The RKHS generated by the Gaussian kernel, which is extensively used for RKHS based adaptive estimation and
machine learning, does not satisfy the above condition for all closed sets. A detailed account for RKHS that separate
closed sets can be found in Reference 35. In this article, we use the Sobolev-Matern kernels, which does satisfy the above
condition for all closed sets. A sufficient condition for an RKHS to separate closed sets is that it contains a rich family of
bump functions.

Theorem 2 (32). Let X be the RKHS of functions over X and suppose that this RKHS includes a rich family of bump
functions. If the PE condition in Definition PE. 2 holds for Ω, then Ω ⊆ 𝜔

+(x0), the positive limit set corresponding to the
initial condition x0.

This theorem gives us a necessary condition for a set to be persistently excited. The proof of the theorem uses contra-
diction. To give an overview of the proof, suppose y ∈ Ω is not contained in the positive limit set. Then, there exists an
open ball B

𝛿
(y) of radius 𝛿 centered at y such that it does not intersect the positive limit set. By hypothesis, the RKHS con-

tains a rich family of bump functions. Thus, there is a bump function by ∈ X such that by(y) = 1 and by(x) = 0 for all x
outside a compact set Cy ⊂ B

𝛿
(y). Since y is not contained in the positive limit set by assumption, after a finite amount of

time,

∫

t+Δ

t

(


∗
x(𝜏)x(𝜏)by, by

)

HX

d𝜏 =
∫

t+Δ

t
|by(x(𝜏))|2d𝜏 = 0.

On the other hand, since(y, y) ≤ k
2
, we have

1 = by(y) = |
|(by,(y, ⋅))HX

|
| = |

|(by,PΩ(y, ⋅))HX
|
| ≤ ||PΩby||HX ||(y, ⋅)||HX ≤ k||PΩby||HX .

From the definition of PE, it is clear that the assumption y ∈ Ω is not contained in the positive limit set leads to a con-
tradiction. A detailed proof can be found in Reference 32. While designing a adaptive estimator, this necessary condition
can tell us where to look for persistently excited sets in the state-space.

2.4 Approximations, convergence rates, and sufficient condition

For practical implementation, we approximate the infinite-dimensional adaptive estimator equations given in the pre-
vious subsection. Let {Ωn}n∈N be a nested sequence of finite subsets of Ω, Further, let {Ωn}n∈N be the corresponding
subspaces of Ω generated by the finite sets Ωn. Now, define PΩn as the orthogonal projection operator from Ω
to the subspace Ωn such that limn→∞ PΩn f = f for all f ∈ Ω. With this definition of approximation, we write the
finite-dimensional adaptive estimator model and the learning law as

̇x̂n(t) = Ax̂n(t) + Bx(t)P∗Ωn
̂f n(t),

̇
̂f n(t) = Γ−1

(

Bx(t)P∗Ωn

)∗
Px̃n(t)

with x̃n ∶= x − x̂n. The basis of the finite-dimensional RKHS Ωn is the set {𝔎xi |xi ∈ Ωn}. We now note that the
finite-dimensional function estimate ̂f n(t) has the form ̂f n(t) ∶=

∑n
i=1𝛼̂i(t)𝔎xi . Using the reproducing property of the

kernel, we rewrite the above finite-dimensional learning law as

̇
𝜶̂(t) = K

−1𝚪−1
(xc, x(t))B∗Px̃n(t), (2)

where 𝜶̂(t) ∶= {𝛼̂1(t), … , 𝛼̂n(t)}T , K is the symmetric positive definite Grammian matrix whose ijth element is defined
as Kij ∶= (xi, xj), 𝚪 ∶= ΓIn is the gain matrix, and

(xc, x(t)) ∶=
{

(x1, x(t)), … ,(xn, x(t))
}T
.
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1568 PARUCHURI et al.

The new learning law defines the rate of evolution of the coefficients, as opposed to the old learning law which defines
the rate of evolution of the function ̂f n(t). This step is essential for implementation purposes. We refer the reader to
Reference 36 for the intermediate steps involved in the derivation. Note, the PE condition implies the convergence of the
infinite-dimensional function estimate ̂f (t) to f . It does not imply anything about the convergence of the approximation
of the function estimate ̂f n(t) to f . On the other hand, the following theorem, proved in Reference 8, shows that the term
̂f n(t) to ̂f (t) as n →∞.

Theorem 3 (8). Suppose that x ∈ C([0,T],Rd) and that the embedding i ∶ Ω → C(Ω) is uniform in the sense that

||f ||C(Ω) ≡ ||if ||C(Ω) ≤ C||f ||Ω .

Then for any T > 0 and t ∈ [0,T],

||x̂ − x̂n||C([0,T];Rd) → 0,

||̂f (t) − ̂f n(t)||C([0,T];Rd) → 0,

as n →∞.

Thus, as we choose denser finite discrete sets Ωn in Ω, the approximation of the function estimate ̂f n(t) gets closer
to the function estimate ̂f (t), which in turn converges to the actual function f as t → ∞ if the PE condition holds.
The above theorem does not explicitly tell us how to choose the set Ωn ⊆ Ω. However, when the set Ω is a com-
pact smooth Riemannian manifold embedded in Rd with metric dM , the rate at which ̂f n(t) converges to the ̂f (t)
depends on how the elements of the set Ωn are distributed in the set Ω. This distribution is defined in terms of the fill
distance

hΩn,Ω ∶= sup
x∈Ω

min
𝜉i∈Ωn

dM(x, 𝜉i).

Theorem 4 (33). Let Ω ⊆ X ∶= Rd be a k-dimensional smooth manifold, and let the native space X be continuously
embedded in a Sobolev space W 𝜏,2(X) with 𝜏 > d∕2, so that ||f ||W 𝜏,2(Rd) ≲ ||f ||X . Defines = 𝜏 − (d − k)∕2 and let 0 ≤ 𝜇 ≤
⌈s⌉ − 1. Then there is a constant hΩ such that if hΩn,Ω ≤ hΩ, then for all f ∈ RΩ(X ) we have

||(I − PΩn)̂f (t)||W𝜇,2(Ω) ≲ hs−𝜇
Ωn,Ω

||̂f (t)||RΩ(X ).

In the above theorem, the notation RΩ(X ) represents the restriction of the space X to the set Ω, and the notation
a ≲ b implies that there exists a positive constant c such that a ≤ cb. This theorem requires a lot of technical details and
we direct interested readers to Reference 33 for the detailed explanation of the rigorous theory and proofs. In this article,
we are interested in the implications of the theorem. The theorem states that the fill distance hΩn,Ω defines the rate at
which the norm of the error ̂f (t) − ̂f n(t) converges to zero.

2.4.1 Sufficient condition

In all the discussion above, we assume that we have knowledge of the persistently excited set Ω. In many practical
cases, it is impossible to determine this set exactly. However, there is a much more practical and intuitive way for select-
ing the kernel centers in the set Ωn when the RKHS is generated by a strictly positive definite kernel. For the precise
hypothesis of the theorem below, the reader should see Reference 31: the context of the following theorem is rather
detailed.

Theorem 5 (6,31). Suppose the RKHS is generated by a strictly positive definite kernel and the hypotheses of Reference 31
hold. Let 𝜖 < 1

2
mini≠j ||xi − xj||, where xi and xj are the kernel centers that belong to the set {x1, … , xn}. For every t0 ≥ 0 and

𝛿 > 0, define

Ii ∶= Ii,𝜖,𝛿 ∶= {t ∈ [t0, t0 + 𝛿] ∶ ||x(t) − xi|| ≤ 𝜖}.
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PARUCHURI et al. 1569

If there exists a 𝛿 = 𝛿(𝜖) such that the measure of Ii is bounded below by a positive constant that is independent of t0 and
the kernel center xi, and if the measure of [t0, t0 + 𝛿] is less than or equal to 𝛿, then the spacen is persistently exciting in the
sense of PE 2.

Intuitively, the above theorem states that the neighborhoods of the points in the finite PE set Ωn are visited by the
state trajectory infinitely many times, and the time of visitation is bounded below in a certain sense. Note that the above
sufficient condition implies PE 2. When the hypotheses of Theorem 1 hold, we can conclude that the sufficient condition
given in Theorem 5 implies PE 1. While implementing the adaptive estimator, if we only know that the actual function
f ∈ X with X an infinite set, (as usual) the sufficient condition given in Theorem 5 only implies ultimate boundedness
of the function estimate instead of convergence, in particular when we use the dead zone gradient law. Notice that this
ultimate bound actually implies a stronger result than the one in the conventional analysis in Euclidean space: here, the
ultimate bound is explicit in terms of the approximation space error.31

2.5 Center selection criteria

We discussed the various necessary and sufficient conditions for a set to be persistently excited in the previous subsec-
tions. The theory also illuminates whether we can achieve parameter convergence for a particular dynamical system.
For instance, the state trajectory of a chaotic dynamical system does not regularly visit any points in the state-space.
As a result, we cannot guarantee parameter convergence in this case. Furthermore, it is also clear that we can esti-
mate the unknown function values only at the state-space regions that the state trajectory visits. Thus, selection of
the kernel centers requires knowledge of the areas of state-space where the state trajectory concentrates over time.
Based on the theory presented in the previous subsections, we list the following criteria for choosing the kernel
centers.

(C1) The kernel centers should be contained in or be as close as possible to the positive limit set based on Theorem 2.
(C2) The kernel centers should be evenly distributed when possible. There are two reasons for selecting this criterion.

(i) The linear dependency of the kernels will be high if the centers are placed too close to each other. This will
increase the condition number of the Grammian matrix in Equation (2).

(ii) On the other hand, if the centers are too far apart, the fill distance increases, which in turn reduces the
approximation rates based on Theorem 4.

(C3) The neighborhood of the centers should be visited by the state trajectory regularly. This is to satisfy the sufficient
condition for PE based on Theorem 5.

2.6 Example: The case when we have a priori knowledge of positive limit set

We test the above listed criteria on a simple practical example. We consider a nonlinear single-mode undamped
piezoelectric oscillator36 with no input to test the above criteria. The governing equations have the form

{
ẋ1

ẋ2

}

=

[
0 1
− ̂K

M
− C

M

]

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

A

{
x1

x2

}

+

{
0
− P

M

}

⏟⏞⏟⏞⏟

%

z̈(t)
⏟⏟⏟

u(t)

+

{
0
1

}

⏟⏟⏟

B

(

−
̂KN1

M
x3

1(t) −
̂KN2

M
x5

1(t)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

f (x(t))

, (3)

where M,
̂K,C,P are the modal mass, modal stiffness, modal damping, and modal input contribution term of the

piezoelectric oscillator. The variables ̂KN1 ,
̂KN2 are the nonlinear stiffness terms. The terms x1, x2, and z are the modal dis-

placement, modal velocity and base displacement of the oscillator, respectively. The steps involved in deriving the above
governing equations can be found in Reference 36. Typically, the magnitudes of the velocity and displacement values are
not of the same order. In such cases, we have to use kernels that are skewed in a particular direction. Alternatively, we
scale one of the states as x1 = Sx̃1, where S is a positive constant. Note that, after scaling, we have x(t) ∶= {x̃1(t), x2(t)}T . In
our simulations, we choose M = 0.9745, ̂K = 329.9006, ̂KN1 = −1.2901 × 105, and ̂KN2 = 1.2053 × 109. For the undamped,
no input case, that is, C = 0 and P = 0, the total energy is conserved. In other words, the trajectory is always contained in
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1570 PARUCHURI et al.

the limit set 𝜔+(x0), where x0 ∈ R2 is the initial condition. Note that any arbitrary discrete finite set in 𝜔+(x0) is visited
by the state trajectory infinitely many times.

Since we have a priori knowledge of the limit set 𝜔+(x0) for a given initial condition, we choose kernel centers in the
set Ω and integrate the equations

̇x̂n(t) = Ax̂n(t) + B𝜶̂T(t)(xc, x(t)),
̇
𝜶̂(t) = K

−1𝚪−1
(xc, x(t))B∗Px̃n(t)

over the interval [0,T] for some T > 0. In all our simulations, we use the Sobolev-Matern 3,2 kernel, which has the
form

3,2(x, y) =

(

1 +
√

3||x − y||
l

)

exp

(

−
√

3||x − y||
l

)

,

where l is the scaling factor of length.37

To analyze the above-listed criteria’s effectiveness, we tested the adaptive estimator with a random and a determin-
istic, uniform collection of kernel centers. We set S = 0.02, l = 0.2, Γ = 0.001, and n = 40. The states and the parameters
are initialized at x0 = {1.5, 0}T and 𝛼i(0) = 1 for i = 1, … ,n, respectively. For the uniform kernel center selection, we
first calculate the distance between two adjacent kernel centers ln when they are distributed uniformly in the pos-
itive limit set. Since we know the exact equation of the positive limit set,29 we can calculate the total length and
hence the length of the arc between two adjacent kernel centers. Given a kernel center, we choose the adjacent ker-
nel center at a distance ln. We repeat this procedure until we choose the required number of kernel centers that are
distributed uniformly in the positive limit set. For choosing the kernel centers for the random case, we first ran the
uniform center selection algorithm for n = 48 case, and then used the MATLAB function randperm to select n = 40
kernel centers randomly. Note that the MATLAB function randperm uses a uniform pseudorandom number generator
algorithm.

Figures 1 and 2 show the pointwise error |f (x) − ̂f n(T, x)| after running the adaptive estimator for T = 2000 s for a
particular case of random and uniform selection of kernel centers. It is clear from the figures that the pointwise error is
low in the case of uniform sampling. Figure 3 shows how the norm ||𝜶 − 𝜶̂(t)||Rn varies with time t for both the random
and uniform center selection methods. It is clear from Figure 3 that the coefficient error norm converges rapidly to zero
for the uniform centers case. For the random centers case, the error norm does not even start converging in the first 2000 s.

In the above problem, it is assumed that we have an explicit equation for the positive limit set 𝜔+(x0) for a
given initial condition x0. Furthermore, the state trajectory is contained in the set 𝜔+(x0). This makes it possible
to choose kernel centers that are uniformly distributed. In most practical examples, we cannot derive an explicit
expression for the set 𝜔+(x0). We only have samples of the state-trajectory that is contained in or converges to
the positive limit set 𝜔+(x0). In the following two sections, we present kernel center selection algorithms that can
be implemented when we do not have explicit equation of the positive limit set or when the state trajectory is
not contained in the positive limit set. These algorithms are designed to be implemented a priori to starting the
estimator.

3 METHOD 1: BASED ON CVT AND LLOYD’S ALGORITHM

The first method we propose is based on building centroidal Voronoi tessellations (CVT) around the positive limit set.
This method relies on samples taken in the positive limit set. However, we do not have to know the equation of the
positive limit set explicitly, we only require that we know the limit set is contained in some known set. We implement
this approach for systems where the state-trajectory is contained in the positive limit set or converges to the same in finite
time. We assume that there is a dense samplingΞ of the positive limit set, that is,Ξ = 𝜔+(x0). Let {Ξm}∞m=1 be a sequence of
finite subsets ofΞ such thatΞm ⊂ Ξm+1 for all m ∈ N and∪∞m=1Ξm = Ξ, whereΞm = {𝝃1, … , 𝝃qm

}. The term qm represents
the number of samples in the set Ξm. Given a set of samples Ξm, we construct a region Qm that is assumed to enclose
the positive limit set. Before we go into the details of implementation, let us take a look at the theory behind Voronoi
partitions.
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PARUCHURI et al. 1571

F I G U R E 1 Random Centers—Pointwise error |f (x) − ̂f n(T, x)|. The marker ∗ and the red line represent the kernel centers and the
limit set, respectively

F I G U R E 2 Uniform Centers—Pointwise error |f (x) − ̂f n(T, x)|. The marker ∗ and the red line represent the kernel centers and the
limit set, respectively
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1572 PARUCHURI et al.

F I G U R E 3 Variation of ||𝜶 − 𝜶̂(t)||Rn with time

3.1 Voronoi partition

Suppose the state-space X is endowed with the metric d(⋅, ⋅). In this article, we use the Euclidean metric. Let Qm ⊆ X be
a convex polytope and let Pm = {pm,1, … ,pm,nm

} be a set of nm points. The Voronoi partition (Pm) generated by the set
of points Pm is the collection of nm polytopes, Pm,1, … ,Pm,nm , defined by

Pm,i =
{

x ∈ Qm|d(x, xi) ≤ d(x, xj), for j = 1, … ,nm, j ≠ i
}

for i = 1, … ,nm. An edge of the polytope Pm,i is the region Pm,i ∩ Pm,j or Pm,i ∩ 𝜕Qm for some j ≠ i. We say that two poly-
topes are adjacent when they share a common edge. The notation 𝜕Qm denotes the boundary of the region Qm. We use
the notation E((Pm),Qm) to denote the union of all edges of the polytopes in (Pm). If R ⊆ Qm, then E((Pm),R) =
E((Pm),Qm) ∩ R. A particular class of Voronoi partitions are the centroidal Voronoi partitions or centroidal Voronoi tes-
sellations, where each point generating the polytope is also its centroid. We use the notation CPm,j to denote the centroid
that generates the polytope Pm,j. Note, given a region Y ⊆ X in the state-space, its centroid CY is defined as

CY =
1

MY ∫Y
y𝜌(y)dy,

where MY ∶= ∫Y 𝜌(y)dy is the total mass of Y , and 𝜌(y) is the mass density function over Y . When the polytope Qm is
convex, the partitions are also convex. This in turn implies that the centroid of each partition is contained inside the
polytope. For a fixed number of partitions nm, a convex polytope Qm can have more than one centroidal Voronoi partition.
While implementing this method for kernel center selection, the term nm corresponds to the number of centers. The
subscript m corresponds to the sampling subset Ξm. The number of kernel centers depends on the samples collected in
this method.

3.2 Lloyd’s algorithm

Lloyd’s algorithm is used to construct the centroidal Voronoi tessellations for a given convex polytope Qm and a fixed
number of partitions nm. It involves the following steps,
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PARUCHURI et al. 1573

(i) Choose an initial set of points Pm.
(ii) Calculate the Voronoi partitions (Pm) for the nm points.

(iii) Calculate the set of centroids {CPm,1 , … ,CPm,nm
} of the Voronoi partitions.

(iv) Set Pm = {CPm,1 , … ,CPm,nm
} and go back to the second step.

The above set of steps are evaluated until convergence of centroids is achieved. The convergence of the algorithm for
the convex case is proved in Reference 38.

3.3 Implementation

The method we develop based on CVT and Lloyd’s algorithm assumes that we have a finite sampling Ξm of the positive
limit set 𝜔+(x0). We use this finite sampling Ξm to construct a region Qm that encloses the positive limit set 𝜔+(x0). Thus,
the working assumption is that while we do not know the exact form of𝜔+(x0), we do know it is contained in Qm. We then
calculate the centroidal Voronoi partitions of the polygon and choose the kernel centers as the centroids of the partitions.
In our implementation, we assume the mass density function as 𝜌(q) = 1 for all q ∈ Qm and 𝜌(q) = 0 elsewhere. In the
following discussion, we formalize this implementation.

Examples of the region Qm for two different positive limit sets is shown in Figure 4. In the case (b) where the
positive limit set 𝜔+(x0) is straight line, the region Qm is nothing but the rectangle enclosing the set. For the case
(a) where the positive limit set 𝜔+(x0) is a closed curve that is symmetric about the origin in the figure, the region
Qm is first formed by the joining the samples of the positive limit set to form a closed curve. The closed curve
is then scaled to form a larger and smaller closed curves. We choose Qm to be the region enclosed by the larger
and smaller closed curves. As evident from Figure 4, the region Qm is not always convex. Thus, the theory in the
previous subsection is not strictly applicable. Let Q′

m be the convex hull of the polytope Qm. We know that the
Lloyd’s algorithm converges for the convex case.38 The mass density function is still equal to 1 on Qm and 0 else-
where. Suppose we choose nm points in Q′

m and run the Lloyd’s algorithm. As a result, we get a set of centroids P′m
that generate the centroidal Voronoi partition (P′m). Now we define the collection (Pm) ∶= {P′m,1 ∩ Qm, … ,P′m,nm

∩
Qm}. It is easy to see that (Pm) is a centroidal Voronoi partition of the region Qm generated by the centroids
Pm = P′m.

Thus, the Lloyd’s algorithm indeed converges for the case in question. However, the polytopes in (Pm) are not nec-
essarily convex. And hence, the centroid pm,i ∈ Pm need not be contained in the polytope P′m,i ∩ Qm for i = 1, … ,nm.
The centers need not even be contained in the region Qm. This is certainly not desirable when implementing Lloyd’s
algorithm and CVT for problems like sensor location or multirobot coordination.39 However, the goal of our problem
is to choose kernel centers that are close to the positive limit set. In the following analysis, we show that with suf-
ficient number of samples and careful selection of the region Qm, we can often choose centers close to the positive
limit set.

F I G U R E 4 Examples of region Qm constructed around the Ξm ⊆ 𝜔

+(x0). In Subfigure (a), the samples are collected from a circle.
Subfigure (b) shows the case where the samples are contained in a straight line. The red curves are formed by connecting the samples Ξm.
The blue region represents the region Qm
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1574 PARUCHURI et al.

3.4 Convergence for restricted cases

We restrict the following analysis to positive limit sets contained in R2 that are homeomorphic to a line or a circle. In
other words, the positive limit set is an open or closed curve. With careful selection of Qm, it is possible to show that we
can choose kernel centers that approximate the positive limit set. The region Qm is constructed such that the following
conditions holds.

Condition 1. Associated with each Ξm is a region Qm such that

1. the maximum width wm of the region satisfies wm < rm, where 0 < rm < rm−1 for all m ∈ N,
2. the region Qm is nested in Qm−1 for all m ∈ N,
3. the sequence {rm}∞n=1 converges to 0,
4. for each rm, there is an integer nm such that the polytope Pm,j ⊆ Bcrm(CPm,j) for all j = 1, … ,nm. Here, the term Bcrm (CPm,j)

is the closed ball of radius crm centered at the centroid CPm,j that generates the polytope Pm,j with c a fixed positive
constant.

We can think of the maximum width wm of the region Qm given in Figure 4A as the Hausdorff distance between
the inner and outer boundaries of the region Qm. In the case of the region given in Figure 4B, the maximum width wm
corresponds to the Hausdorff distance between the two boundaries of the region Qm that are parallel to the positive limit
set.

Theorem 6. Suppose Condition 1 holds. Then dH(𝜔+(x0),Pm) → 0 as m → ∞, where dH(⋅, ⋅) is the Hausdorff distance,
𝜔

+(x0) is the positive limit set and Pm = {CPm,1 , … ,CPm,nm
} is the set of centroids that generate the CVT (Pm).

Proof. We fist note that the centroid of each polytope is contained in Bcrm(CPm,j) since the ball is convex. Since the max-
imum width of the region wm satisfies wm < rm, it is clear that dH(𝜔+(x0),Qm) < rm. On the other hand, since the ball
Bcrm(CPm,j) contains the polytope Pm,j, we have dH(Pm,j, {CPm,j}) < crm for any j = 1, … ,nm. Note that the bound crm on
dH(Pm,j, {CPm,j}) is uniform. Also, recall that Qm = ∪

nm
j=1Pm,j, and Pm = ∪

nm
j=1{CPm,j}. Thus, we have dH(Qm,Pm) < crm. Using

triangle inequality, we get dH(𝜔+(x0),Pm) < (1 + c)rm. Since rm → 0 as m → ∞, we conclude that the centroids approach
the positive limit set as m → ∞. ▪

The assumptions in the above theorem are very strong because of Condition 1. It is possible to relax some of the
assumptions by considering the geometric properties of the partitions. But, from a practical standpoint, the maximum
number of samples of the positive limit set is limited by the measurement equipment. This theorem provides a frame-
work for an implementation that agrees with intuition—if new samples of the positive limit set are measured, choose
Qm such that rm is reduced and number of kernel centers nm are increased. For a given rm, the number of kernel cen-
ters cannot be indefinitely increased. Consider the example in Figure 5. Due to numerical errors, the Lloyd’s algorithm
converges to a CVT in which the kernel centers do not lie on the positive limit set when nm is large. On the other
hand, the term rm cannot be decreased indefinitely, since the region Qm, built based on finite number of samples,
may no longer contain the positive limit set. Thus, the number of samples collected restrict the effectiveness of this
method.

F I G U R E 5 Increasing the number of kernel centers leads to completely different types of CVT while using the same Lloyds algorithm.
Case (a) considers 5 kernel centers. Case (b), on the other hand, considers 20 kernel centers. The markers o and ∗ represent the initial
positions and final converged positions of the kernel centers, respectively. The red line represents the limit set
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PARUCHURI et al. 1575

To avoids CVTs that are similar to the one given in Figure 5B, we introduce the following condition. Let Q represent the
outer rectangle that is contained in R2 in Figure 5 and let  l represent the CVT made up of l horizontally stacked identical
rectangles. Figure 5A depicts the CVT 5 of Q. The following condition inherently ensures that the kernel centers are
evenly distributed in or near the positive limit set.

Condition 2. Let l = 1, … ,nm. For any possible l, consider an arbitrary collection of l polytopes Pm,i1 , … ,Pm,il in the
partition (Pm) such that each polytope is adjacent to at least one other polytope in the collection. The union of edges
E((Pm),Pm,i1 ∪ … ∪ Pm,il ) is homeomorphic to the union of edges E( l,Q) of the CVT  l.

Algorithm 1. CVT based kernel center selection

Input: Ξm, nm
Output: Pm

1. Initialize the constant rm. Construct region Qm such that the positive limit set 𝜔+(x0) is contained in Qm.
2. Choose nm separate points in the convex hull of Qm.
3. Run the Lloyd’s algorithm using the points chosen in Step 2 as the initial points.

(i) Calculate the Voronoi partitions (Pm) for the nm points.
(ii) Calculate the centroids CPm,1 , … ,CPm,nm

of the Voronoi partitions (Pm).
(iii) Set Pm = {CPm,1 , … ,CPm,nm

} and go back to the Step 3 (i).
The above steps are repeated until convergence is achieved.

4. If the CVT from Step 3 does not satisfy Condition 2, choose a constant sm such that sm < rm. Set rm = sm and go back
to Step 2.
If the CVT satisfies Condition 2, choose the set of centroids of the CVT Pm as the kernel centers for the adaptive
estimator.

Algorithm 1 shows the steps involved in implementing this method. Step 3 in the algorithm can be implemented using
commercially available tools like MATLAB, which makes the algorithm extremely straightforward for implementation.
The inputs to the algorithm are the samples Ξm and the number of kernel centers nm. We iteratively choose rm in the
algorithm until Condition 2 is satisfied. The output of the algorithm is the set of kernel centers, which can be implemented
in the adaptive estimator algorithm.

4 METHOD 2: BASED ON KOHONEN SELF- ORGANIZING MAPS

The second approach presented in this article is based on Kohonen self-organizing maps (SOMs), which were first intro-
duced by Teuvo Kohonen.40 Self-organizing maps are typically used for applications like clustering data, dimensionality
reduction, pattern recognition, and visualization. Thus, given a set of samples in the input space, these maps can be used to
produce a collection of neurons on a low-dimensional manifold that represents the samples’ distribution. In our problem,
the input space is the state-space, and the samples are the state measurements. The neurons on the low-dimensional man-
ifold are the kernels centers. The position of the kernel centers in the state-space are represented by the weight vectors
that the SOM algorithm generates.

One of the critical features of self-organizing maps is that the underlying topology between the input space (the orig-
inal dataset) and the output space is maintained. Intuitively, points that are close in the original dataset are mapped to
neurons that are close to each other (in some predefined metric). For our problem, we want the kernel centers to be evenly
spaced in the state-space in addition to being close to the measurement samples. To ensure this, we choose the initial set
of kernel centers on a manifold that is homeomorphic to the positive limit set. This requires knowledge of the topology
of the positive limit set. Before going over the details, let us take a look at the theory of Kohonen self-organizing maps.

Suppose we have the set of samples Ξm = {𝝃m,1, … , 𝝃m,qm
}. In the context of this article, the set Ξm is assumed to be

the set of samples of the positive limit set𝜔+(x0). Let nm represent the number of kernel centers pm,1, … ,pm,nm
we want to

choose. We associate the ith kernel center with a weight vector pm,i(t) ∈ Rd for i = 1, … ,nm. Note that the weight vectors
depend on time and at any given instant in time t, the weight vector is an element of Rd. The neighborhood functionj
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1576 PARUCHURI et al.

defines neighbors of the center j. The choice of the neighborhood function depends on the topology we want to define on
the kernel centers. The neurons (or the kernel centers) are often chosen in the form of a linear grid or a 2D grid, and the
neighbors in such grids are naturally defined. The Kohonen self-organizing map’s implementation involves the following
steps. We first randomly choose a sample 𝝃m,k from the sample set Ξm, where k ∈ {1, … , qm}. We then determine the
winning neuron—the kernel center that is closest to the sample 𝝃m,k. The winning neuron i at a given instant t is the one
which satisfies the condition

d(𝝃m,k,pm,i(t)) ≤ d(𝝃m,k,pm,j(t)) (4)

for j = 1, … ,nm, where d(⋅, ⋅) is the Euclidean metric. We now update the weight vectors using the evolution equation

dpm,j(t)
dt

= 𝛽j(t)j(t, i)
(
𝝃m,k − pm,j(t)

)
(5)

for j = 1, … ,nm. In the above equation, 0 ≤ 𝛽j(t) < 1 defines the rate of convergence of the center j. The neighborhood
function determines which neighbors of the node i get updated. For convergence, we require that 𝛽j(t) → 0 andj(t, i) → 0
as t →∞, for any i, j ∈ {1, … ,nm}. While implementing this algorithm, we can observe the SOM goes through a topo-
logical ordering phase during which the grid of neurons try to match the patterns if the sample in the input space before
convergence.

The self-organizing map algorithm is easy to implement. Researchers have studied and proved the algorithm’s con-
vergence for cases like the 1D linear array, when the nodes are arranged on a line. A review of some of the theoretical
results on self-organized maps are given in Reference 41.

4.1 Implementation

To implement Kohonen self-organizing maps for kernel center selection, we modify the above-discussed algorithm. In
some dynamical systems, the trajectory approaches the positive limit set but is never contained in the set. In such cases,
we only have measurements of the states and not the samples of positive limit set. Furthermore, arbitrary selection of
state-samples might result in picking points away from the positive limit set. This in turn affects the convergence of the
kernel centers to points inside the positive limit set. Hence, as opposed to choosing random samples 𝝃m,j from the set Ξm,
we use the state measurement x(t) at a given time instant to determine the winning node. We replace the term 𝝃m,j with
x(t) in Equations (4) and (5). This change enables us to implement this method for a more general class of systems in
real-time.

A Kohonen self-organizing map algorithm gives a low-dimensional representation of all samples (which include
the ones that are outside the limit set). On the other hand, the objective of our problem is to choose kernel centers on
the positive limit set such that they are spaced as uniformly as possible. To ensure this, we choose the topology of the
output space to match that of the positive limit set. In other words, we choose the initial kernel centers and the neigh-
borhood function such that the topology is homeomorphic to the positive limit set. For example, if the positive limit set
is a closed curve in R2, the initial weight vectors can be points on the unit circle, and the neighborhood function can be
defined as

j(t, i) =

{
1 if j ∈  ,
0 if j ∉  ,

(6)

where the set  is defined as  = {i − 1, i, i + 1} for i ≠ 1,nm. For i = 1 and i = nm, we choose  = {nm, 1, 2} and  =
{nm − 1,nm, 1}, respectively.

On top of the above modifications, we enforce the condition that, when we have samples of the positive limit set, the
number of kernel centers or neurons nm should be strictly less than qm, the number of samples in the set Ξn. When nm is
equal to qm, the kernel centers can converge to the samples. In the case where the positive limit set is a closed curve, this
can be interpreted as a solution to the traveling salesman problem.42 To avoid convergence to the samples, we impose the
above dimensionality reduction condition.
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PARUCHURI et al. 1577

Algorithm 2 shows the steps involved in implementing this method. We present the algorithm for the case where the
positive limit set is a closed curve. However, the algorithm can be extended easily for other types of positive limit sets.
The neighborhood function for this case, defined by Equation (6), is inherently accounted in the algorithm.

Algorithm 2. Kohonen SOM based kernel center selection—closed curve case

Input: x(t), qm
Output: {pm,1(T), … ,pm,nm

(T)}

1. Choose the number of kernel centers nm such that nm < qm. If pm = 0, choose a positive integer for nm.
2. Choose 𝛽j such that 0 ≤ 𝛽j(t) < 1 for t ∈ [0,∞) and 𝛽j(t) → 0 as t →∞ for all j = 1, … ,nm.
3. Initialize the weight vectors pm,j as the points on a circle contained inside the closed curve.
4. Implement the Kohonen SOM algorithm for t ∈ [0,T] for some T > 0.

(i) At time t, determine the winning neuron i that satisfies the condition

d(x(t) − pm,i(t)) ≤ d(x(t) − pm,j(t))

for j = {1, … ,nm}, where d(⋅, ⋅) is the Euclidean metric.
(ii) Define the set  as  = {i − 1, i, i + 1} for i ≠ 1,nm. For i = 1 and i = nm, choose  = {nm, 1, 2} and  = {nm −

1,nm, 1}, respectively.
(iii) Update the weight vectors based on

dpm,j(t)
dt

=

{
𝛽j(t)

(
x(t) − pm,j(t)

)
if j ∈ 

0 if j ∉ 

for j = 1, … ,nm. This update happens until next state measurement. Go back to Step 4 (i) after the update.

Recall that in the case of CVT based method presented in the previous section, the samples are contained in the positive
limit set, which meant the trajectory was contained in the positive limit set or converged to the set in finite time. Since
we use the state measurement for the Kohonen SOM based approach, we can relax some of the requirements of the CVT
based method. It is sufficient for the trajectory to converge to the positive limit set as t → ∞. However, it is important to
choose 𝛽j(t) such that the state trajectory converges to the positive limit set faster than the rate at which 𝛽j(t) → 0. If this
is violated, the kernel centers will not converge to the positive limit set.

Note, in the Lloyd’s algorithm, the distance between any two kernel centers is inherently ensured to remain uniform
by the algorithm. This can be attributed to the way partitions are defined and the selection of the mass density function.
On the other hand, the distribution of the converged kernel centers from the Kohonen SOM based algorithm depends on
the distribution of the sampled measurements. If the state measurements are concentrated on a particular neighborhood
of the positive limit set, implementing Algorithm 2 will result in the kernel centers being concentrated in or near the
neighborhood.

5 NUMERICAL ILLUSTRATION OF CENTER SELECTION METHODS

We illustrate the effectiveness of the two approaches explained above for two examples in this section. The first example
is the undamped piezoelectric oscillator example considered in Section 2.6. The positive limit set in this case is almost
symmetric about the axis after scaling of the states. The second example is a nonlinear oscillator which has a nonsymmet-
ric positive limit set. We implement the above discussed methods for both cases and use the resulting kernel centers in
the adaptive estimators. We use MATLAB lloydsAlgorithm function, developed by Aaron T. Becker’s Robot Swarm
Lab, for implementing Step 3 of Algorithm 1.

The function expects the boundary of a polygon as input and hence we approximate the region Qm using a polygon as
shown in Figures 6 and 9. In the adaptive estimator simulations, we use the Sobolev-Matern 3,2 kernel given in Section 2.6.
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1578 PARUCHURI et al.

F I G U R E 6 Algorithm outputs of Example 5.1. The marker ∗ and the blue line represent the kernel centers and the limit set,
respectively. (A) Algorithm 1 output; (B) Algorithm 2 output

5.1 Example 1: Nonlinear piezoelectric oscillator

The first example we consider is the undamped nonlinear piezoelectric oscillator whose motion is governed by the
Equation (3). We use the same values for the structural parameters as the ones used in the example in Section 2.6. We set
the scaling factor S = 0.02 and initialized the states at x0 = {x̃1(0), x2(0)}T = {0.03, 0}T . Figure 6 shows how the kernel
centers evolve while using Algorithms 1 and 2. We set the number of kernel centers as nm = 40 for both of the algorithms.
For implementing Algorithm 1, we first collect the set of samples Ξm of the positive limit set 𝜔+(x0). By connecting the
samples in Ξm with straight lines, we form a closed curve which is represented by the blue line in Figure 6A. We then
scale the closed curve by a factor of 1.1 and 0.9, thus forming concentric larger and smaller closed curves. We chose the
region between these two closed curves as Qm. Dividing the region Qm as shown in Figure 6A results in a polygon, thus
enabling us to use thelloydsAlgorithm function in MATLAB. While implementing Algorithm 1, we chose 𝛽j(t) = 0.99
for t ≤ 1000 s and 𝛽j(t) = 0 for t > 1000 s for all j. As evident from Figure 6, the CVT based approach and the Kohonen
SOM based approach take 1000 iterations and 100 s, respectively to converge. It is clear that the kernel centers are more
uniformly spaced than those picked arbitrarily in the example in Section 2.6. We subsequently use the converged kernel
centers and simulate the adaptive estimator algorithm for T = 300 s. For the adaptive estimator, we set l = 0.006,Γ = 0.001
and initialized the parameters at 𝛼i(t) = 0.0001 for i = 1 … ,nm. Figures 7 and 8 shows the pointwise error |f (x) − ̂f (T, x)|
obtained after using the kernel centers from the CVT and Kohonen SOM based approach. As expected, both the plots
show that the error is (10−4) over the positive limit set.
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PARUCHURI et al. 1579

F I G U R E 7 Kernel centers for Example 5.1 selected using Algorithm 1—Pointwise error |f (x) − ̂f n(T, x)| obtained from adaptive
estimator. The marker ∗ and the red line represent the kernel centers and the limit set, respectively

F I G U R E 8 Kernel centers for Example 5.1 selected using Algorithm 2—Pointwise error |f (x) − ̂f n(T, x)| obtained from adaptive
estimator. The marker ∗ and the red line represent the kernel centers and the limit set, respectively
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1580 PARUCHURI et al.

5.2 Example 2: Nonlinear oscillator

For the second example, we consider a nonlinear oscillator whose motion is governed by the equation

{
ẋ1

ẋ2

}

=

[
0 1
− 1 0.5

]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

A

{
x1

x2

}

+

{
0
1

}

⏟⏟⏟

B

(
−x2

1x2
)

⏟⏞⏟⏞⏟

f (x(t))

. (7)

This system exhibits a more complex behavior than that in Example 5.1. First, the state trajectory is not contained in
the positive limit set 𝜔+(x0), which is depicted as the blue, solid line in Figure 9. Note that the positive limit set is not
symmetric. Refer Example 9.2.2 in Reference 43 for a detailed analysis of the nonlinear behavior of the oscillator. Here,
we are interested in estimating the nonlinear function f (x(t)) = −x2

1x2.
Figure 9 shows the implementation of the CVT based and Kohonen SOM based kernel center selection methods for

this problem. In both cases, we fixed number of kernel center as nm = 40 and initialized the states at x0 = {x1(0), x2(0)}T =
{0, 2}T . The polygon in Figure 9A for the CVT based approach is built similar to the method used for Example 5.1. For
the Kohonen SOM approach, we set 𝛽j(t) = 0.99 for t ≤ 1000 s and 𝛽j(t) = 0 for t > 1000 s for all j. As evident from the
figures, the CVT and Kohonen SOM methods take 600 iterations and 200 s, respectively for convergence of the kernel

F I G U R E 9 Algorithm outputs of Example 5.2. The marker ∗ and the blue line represent the kernel centers and the limit set,
respectively. (A) Algorithm 1 output; (B) Algorithm 2 output
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PARUCHURI et al. 1581

F I G U R E 10 Kernel centers for Example 5.2 selected using Algorithm 1—Pointwise error |f (x) − ̂f n(T, x)| obtained from adaptive
estimator. The marker ∗ and the red line represent the kernel centers and the limit set, respectively

F I G U R E 11 Kernel centers for Example 5.2 selected using Algorithm 2—Pointwise error |f (x) − ̂f n(T, x)| obtained from adaptive
estimator. The marker ∗ and the red line represent the kernel centers and the limit set, respectively
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1582 PARUCHURI et al.

centers. It is clear that the kernel centers from the CVT based algorithm are more uniformly placed that the output of the
Kohonen SOM algorithm. This can be attributed to the fact the state measurement samples are not uniformly distributed
and to the fact that the CVT method makes strong assumptions about the structure of Qm. Since the distribution of the
state measurement affect the results of the Kohonen SOM based approach, the kernel centers are not uniform in this
case. However, when the kernel centers from these algorithms are implemented in the adaptive estimator, we obtain
convergence on the positive limit set. Figures 10 and 11 shows the pointwise error |f (x) − ̂f (T, x)| after implementing the
adaptive estimator for T = 300 s using the kernel centers from the CVT and Kohonen SOM based kernel center selection
approach, respectively. We set l = 0.5, Γ = 0.001 and initialized the parameters at 𝛼i(t) = 0.0001 for i = 1 … ,nm. As in
Example 5.1, the error is the smallest over the positive limit set.

6 CONCLUSION

In this article, we developed criteria for kernel center selection for use in the theory of infinite-dimensional adaptive
estimation in reproducing kernel Hilbert spaces. We introduced two algorithms that use these criteria for kernel cen-
ter selection. The first algorithm uses centroidal Voronoi tessellations and Lloyd’s algorithm, and the second is based on
Kohonen self-organizing maps. Both approaches provide a simple way to choose kernel centers for a specific class of non-
linear systems—systems in which state trajectory regularly visits the neighborhoods of the positive limit set. Furthermore,
the proposed algorithms do not require explicit equations for the positive limit set and only assume a priori knowledge of
its general features. In particular, the approach based on Lloyd’s algorithm assumes that we can build a polytope in which
the positive limit set is contained. On the other hand, the algorithm that uses Kohonen self-organizing maps requires
knowledge of the positive limit set’s topology. We illustrated the effectiveness of both algorithms using practical examples
and numerical simulations. The approaches discussed in this article assume that approximations or estimates are con-
structed using a fixed number of kernel centers. It would be of great interest to develop techniques that iteratively add
kernel centers in real-time while accounting for the persistence of excitation and fill-distance conditions.
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